Based on the theory of similarity analysis and the analogy between momentum and energy transport equations, the temperature scalings have been derived for forced convection turbulent boundary layers. These scalings are shown to be able to remove the effects of Reynolds number and the pressure gradient on the temperature profile. Furthermore, using the near-asymptotic method and the scalings from the similarity analysis, a power law solution is obtained for the temperature profile in the overlap region. Subsequently, a composite temperature profile is found by further introducing the functions in the wake region and in the near-the-wall region. The proposed composite temperature profile can describe the entire boundary layer from the wall all the way to the outer edge of the turbulent boundary layer at finite Re number. The experimental data and direct numerical simulation (DNS) data with zero pressure gradient and adverse pressure gradient are used to confirm the accuracy of the scalings and the proposed composite temperature profiles. Comparison with the theoretical profiles by Kader (1981, “Temperature and Concentration Profiles in Fully Turbulent Boundary Layers,” Int. J. Heat Mass Transfer, 24, pp. 1541–1544; 1991, “Heat and Mass Transfer in Pressure-Gradient Boundary Layers,” Int. J. Heat Mass Transfer, 34, pp. 2837–2857) shows that the current theory yields a higher accuracy. The error in the mean temperature profile is within 5% when the present theory is compared to the experimental data. Meanwhile, the Stanton number is calculated using the energy and momentum integral equations and the newly proposed composite temperature profile. The calculated Stanton number is consistent with previous experimental results and the DNS data, and the error of the present prediction is less than 5%. In addition, the growth of the thermal boundary layer is obtained from the theory and the average error is less than 5% for the range of Reynolds numbers between 5×105 and 5×106 when compared with the empirical correlation for the experimental data of isothermal boundary layer conditions.

1.
Gad-el-Hak
,
M.
, 2000,
Flow Control: Passive, Active and Reactive Flow Management
,
Cambridge University Press
,
Cambridge
.
2.
Perry
,
A. E.
,
Bell
,
J. B.
, and
Joubert
,
P. N.
, 1966, “
Velocity and Temperature Profiles in Adverse Pressure Gradient Turbulent Boundary Layers
,”
J. Fluid Mech.
0022-1120,
25
, pp.
299
320
.
3.
Afzal
,
N.
, 1982, “
Thermal Turbulent Boundary Layer Under Strong Adverse Pressure Gradient Near Separation, J. Heat Transfer
,”
ASME J. Heat Transfer
0022-1481
104
, pp.
397
402
.
4.
Kader
,
B. A.
, 1981, “
Temperature and Concentration Profiles in Fully Turbulent Boundary Layers
,”
Int. J. Heat Mass Transfer
0017-9310,
24
, pp.
1541
1544
.
5.
Kader
,
B. A.
, 1991, “
Heat and Mass Transfer in Pressure-Gradient Boundary Layers
,”
Int. J. Heat Mass Transfer
0017-9310,
34
, pp.
2837
2857
.
6.
Erm
,
L. P.
, and
Joubert
,
P. N.
, 1991, “
Low-Reynolds-Number Turbulent Boundary Layers
,”
J. Fluid Mech.
0022-1120,
230
, pp.
1
44
.
7.
Castillo
,
L.
, and
Johansson
,
G.
, 2002, “
The Effects of the Upstream Conditions in a Low Reynolds Number Turbulent Boundary Layer With Zero Pressure Gradient
,”
J. Turbul.
1468-5248,
3
, pp.
1
19
.
8.
Castillo
,
L.
, and
Walker
,
D.
, 2002, “
The Effect of the Upstream Conditions on the Outer Flow of Turbulent Boundary Layers
,”
AIAA J.
0001-1452,
40
, pp.
1292
1299
.
9.
Churchill
,
S. W.
, and
Chan
,
C.
, 1995, “
Turbulent Flow in Channels in Terms of the Turbulent Shear and Normal Stresses
,”
AIChE J.
0001-1541,
41
, pp.
2513
2521
.
10.
Churchill
,
S. W.
,
Yu
,
B.
, and
Kawaguchi
,
Y.
, 2005, “
The Accuracy and Parametric Sensitivity of Algebraic Models for Turbulent Flow and Convection
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
5488
5503
.
11.
Le
,
P. M.
, and
Papavassiliou
,
D. V.
, 2006, “
On Temperature Prediction at Low Re Turbulent Flows Using the Churchill Turbulent Heat Flux Correlation
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
3681
3690
.
12.
Wei
,
T.
,
Fife
,
P.
,
Klewicki
,
J.
, and
McMurtry
,
P.
, 2005, “
Properties of the Mean Momentum Balance in Turbulent Boundary Layer, Pipe and Channel Flows
,”
J. Fluid Mech.
0022-1120,
522
, pp.
303
327
.
13.
Wei
,
T.
,
Fife
,
P.
,
Klewicki
,
J.
,
McMurtry
,
P.
, 2005, “
Scaling Heat Transfer in Fully Developed Turbulent Channel Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
5284
5296
.
14.
George
,
W. K.
, 1995,
Some New Ideas for Similarity of Turbulent Shear Flows, Turbulence, Heat and Mass Tansfer
,
Begell House
,
New York
.
15.
George
,
W. K.
, and
Castillo
,
L.
, 1997, “
Zero Pressure Gradient Turbulent Boundary Layer
,”
Appl. Mech. Rev.
0003-6900,
50
, pp.
689
729
.
16.
George
,
W. K.
,
Wosnik
,
M.
, and
Castillo
,
L.
, 1997, “
Similarity Analysis for Forced Convection Thermal Boundary Layer
,”
10th International Symposium in Transport Phenomena in Thermal Science and Process Engineering
, Kyoto, Japan, Vol.
1
, pp.
239
244
.
17.
Wang
,
X.
, and
Castillo
,
L.
, 2003, “
Asymptotic Solutions in Forced Convection Turbulent Boundary Layers
,”
J. Turbul.
1468-5248,
4
, pp.
1
18
.
18.
Blackwell
,
B. F.
, 1972, “
The Turbulent Boundary Layer on a Porous Plate: An Experimental Study of the Heat Transfer Behavior with Adverse Pressure Gradients
,” Ph.D. thesis, Stanford University, Palo Alto.
19.
Reynolds
,
W. C.
, 1957, “
Heat Transer in the Turbulent Incompressible Boundary Layer with Constant and Variable Wall Temperature
,” Ph.D. thesis, Stanford University, Palo Alto.
20.
Kong
,
H.
,
Choi
,
H.
, and
Lee
,
J.
, 2000, “
Direct Numerical Simulation of Turbulent Thermal Boundary Layers
,”
Phys. Fluids
1070-6631,
12
, pp.
2555
2568
.
21.
Schlichting
,
H.
, and
Gersten
,
K.
, 2000,
Boundary Layer Theory
,
Springer
,
New York
.
22.
Oberlack
,
M.
, 1996, “
Symmetries in Turbulent Boundary Layer Flows
,”
Annual Research Briefs
, Center for Turbulence Research, Stanford University/NASA Ames, pp.
183
197
.
23.
Monin
,
A. S.
, and
Yaglom
,
A. M.
, 1971,
Statistic Fluid Mechanics
, MIT, pp.
327
347
.
24.
Granville
,
P.
, 1976, “
A Modified Law of the Wake for Turbulent Shear Layers
,”
ASME J. Fluids Eng.
0098-2202,
98
, pp.
578
580
.
25.
Van Dyke
,
M.
, 1964,
Perturbation Methods in Fluid Mechanics
,
Academic
,
New York
.
26.
White
,
F. M.
, 1974,
Viscous Fluid Flow
, 1st ed.,
McGraw-Hill
,
New York
.
27.
Kays
,
W. M.
, and
Crawford
,
M. E.
, 1993,
Convective Heat and Mass Transfer
, 3rd ed.
McGraw-Hill
,
New York
.
28.
Bell
,
D. M.
, and
Ferziger
,
J. H.
, 1993, “Turbulent Boundary Layer DNS With Passive Scalars,”
Near-Wall Turbulent Flows
,
R. M. C.
So
,
C. G.
Speziale
, and
B. E.
Launder
, eds.,
Elsevier
,
Amsterdam
, pp.
327
336
.
29.
Kays
,
W. M.
, 1994, “
Turbulent Prandtl Number-Where Are We?
,”
ASME J. Heat Transfer
0022-1481,
116
, pp.
284
295
.
30.
Sucec
,
J.
, 2005, “
Calculation of Turbulent Boundary Layers Using Equilibrium Thermal Wakes
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
159
164
.
31.
Taylor
,
R. P.
,
Love
,
P. H.
,
Coleman
,
H. W.
, and
Hosni
,
M. H.
, 1989, “
The Effect of Step Changes in the Thermal Boundary Condition on Heat Transfer in the Incompressible Flat Plate Turbulent Boundary Layer
,”
Proceedings of the 1989 National Heat Transfer Conference
, Vol.
107
, pp.
9
16
.
You do not currently have access to this content.