In this paper laminar forced convection associated with the cross-flow of micropolar fluid over a horizontal heated circular cylinder is investigated. The conservation equations of mass, linear momentum, angular momentum and energy are solved to give the details of flow and thermal fields. The flow and thermal fields are mainly influenced by Reynolds number, Prandtl number and material parameters of micropolar fluid. The Reynolds number is considered up to 200 while the Prandtl number is fixed at 0.7. The dimensionless vortex viscosity is the only material parameter considered in this study and is selected in the range from 0 to 5. The study has shown that generally the mean heat transfer decreases as the vortex viscosity increases. The results have also shown that both the natural frequency of vortex shedding and the amplitude of oscillating lift force experience clear reduction as the vortex viscosity increases. Moreover, the study showed that there is a threshold value for vortex viscosity above which the flow over the cylinder never responds to perturbation and stays symmetric without vortex shedding. Regarding drag coefficient, the results have revealed that within the selected range of controlling parameters the drag coefficient does not show a clear trend as the vortex viscosity increases.

1.
Eckert
,
E. R. G.
, and
Soehngen
,
E.
, 1952, “
Distribution of Heat Transfer Coefficient Around Circular Cylinders in Cross Flow at Reynolds Numbers from 20 to 500
,”
J. Heat Transfer
0022-1481,
74
, pp.
343
347
.
2.
Dennis
,
S. C. R.
,
Hudson
,
J. D.
, and
Smith
,
N.
, 1968, “
Steady Laminar Forced Convection from a Circular Cylinder at low Reynolds Numbers
,”
Phys. Fluids
0031-9171,
11
(
5
), pp.
933
940
.
3.
Collins
,
W. M.
, and
Dennis
,
S. C. R.
, 1973, “
Flow Past an Impulsively Started Circular Cylinder
,”
J. Fluid Mech.
0022-1120,
60
(
1
), pp.
105
127
.
4.
Honji
,
H.
, and
Taneda
,
S.
, 1969, “
Unsteady Flow Past a Circular Cylinder
,”
J. Phys. Soc. Jpn.
0031-9015,
27
, pp.
1688
1698
.
5.
Chun
,
W.
, and
Boehm
,
R. F.
, 1989, “
Calculation of Forced Flow and Heat Transfer Around a Cylinder in Cross Flow
,”
Numer. Heat Transfer, Part A
1040-7782,
15
, pp.
101
122
.
6.
Karniadakis
,
G. E.
, 1988, “
Numerical Simulation of Forced Convection Heat Transfer from a Cylinder in Crossflow
,”
Int. J. Heat Mass Transfer
0017-9310,
31
(
1
), pp.
407
418
.
7.
Eringen
,
A. C.
, 1966, “
Theory of Micropolar Fluids
,”
J. Math. Mech.
0095-9057,
16
(
1
), pp.
1
18
.
8.
Eringen
,
A. C.
, 1972, “
Theory of Thermomicrofluids
,”
J. Math. Anal. Appl.
0022-247X,
38
, pp.
480
496
.
9.
Ariman
,
T.
,
Turk
,
M. A.
, and
Sylvester
,
N. D.
, 1973, “
Microcontinuum Fluid Mechanics, A Review
,”
Int. J. Eng. Sci.
0020-7225,
11
, pp.
905
930
.
10.
Gorla
,
R. S. R.
, 1984, “
Heat Transfer Characteristics of a Micropolar Boundary Layer in a Crossflow Over a Non-isothermal Circular Cylinder
,”
Int. J. Eng. Sci.
0020-7225,
22
(
1
), pp.
47
55
.
11.
Lien
,
F.-S.
,
Chen
,
T.-M.
, and
Chen
,
C.-K.
, 1990, “
Analysis of a Free-Convection Micropolar Boundary Layer about a Horizontal Permeable Cylinder at a Non-uniform Thermal Condition
,”
ASME J. Heat Transfer
0022-1481,
112
, p.
504
506
.
12.
Hassanien
,
I. A.
,
Mansour
,
M. A.
, and
Gorla
,
R. S. R.
, 1994, “
Combined Convection on a Vertical Slender Cylinder in a Micropolar Fluid
,”
Waerme- Stoffuebertrag.
0042-9929,
29
, pp.
355
359
.
13.
Gorla
,
R. S. R.
, 1995, “
Axisymmetric Thermal Boundary Layer of a Micropolar Fluid on a Cylinder
,”
Int. J. Eng. Sci.
0020-7225,
23
, pp.
401
407
.
14.
Mohammedien
,
A. A.
,
Gorla
,
R. S. R.
, and
Hassanien
,
I. A.
, 1996, “
Mixed Convection in an Axisymmetric Stagnation Flow of Micropolar Fluid on a Vertical Cylinder
,”
Acta Mech.
0001-5970,
114
, pp.
139
149
.
15.
Hassanien
,
I. A.
, and
Salama
,
A. A.
, 1997, “
Flow and Heat Transfer of a Micropolar Fluid in an Axisymmetric Stagnation Flow on a Cylinder
,”
Energy Convers. Manage.
0196-8904,
38
(
3
), pp.
301
310
.
16.
Gorla
,
R. S. R.
, and
Takhar
,
H. S.
, 1991, “
Unsteady Mixed Convection Boundary Layer Flow of a Micropolar Fluid Near the Lower Stagnation Point on a Cylinder
,”
Int. J. Eng. Fluid Mech.
,
4
(
3
), pp.
337
347
.
17.
Mansour
,
M. A.
,
El-Hakiem
,
M. A.
, and
El Kabeir
,
S. M.
, 2000, “
Heat and Mass Transfer in Magnetohydrodynamic Flow of Micropolar Fluid on a Circular Cylinder with Uniform Heat and Mass Flux
,”
J. Magn. Magn. Mater.
0304-8853,
220
, pp.
259
270
.
18.
Rahman
,
M.
M.
, and
Sattar
,
M.
A.
, 2006, “
Magnetohydrodynamic Convective Flow of a Micropolar Fluid Past a Continuously Moving Vertical Porous Plate in the Presence of Heat Generation/Absorption
,”
ASME J. Heat Transfer
0022-1481,
128
(
2
), pp.
142
152
.
19.
Badr
,
H. M.
, and
Dennis
,
S. C. R.
, 1985, “
Time-Dependent Viscous Flow Past an Impulsively Started Rotating and Translating Circular Cylinder
,”
J. Fluid Mech.
0022-1120,
158
, pp.
447
488
.
20.
Mahfouz
,
F. M.
, and
Badr
,
H. M.
, 2000, “
Flow Structure in the Wake of a Rotationally Oscillating Cylinder
,”
ASME J. Fluids Eng.
0098-2202,
122
, pp.
290
301
.
21.
Mahfouz
,
F. M.
, and
Badr
,
H. M.
, 2000, “
Forced Convection from a Rotationally Oscillating Cylinder Placed in a Uniform Stream
,”
Int. J. Heat Mass Transfer
0017-9310,
43
(
17
), pp.
3093
3104
.
22.
Roshko
,
A.
, 1954, “
On the Development of Turbulent Wakes from Vortex Streets
,” NACA Rep. No. 1191.
23.
Jordon
,
S. K.
, and
Fromm
,
J. E.
, 1972, “
Oscillatory Drag, Lift and Torque on a Circular Cylinder in a Uniform Flow
,”
Phys. Fluids
0031-9171,
15
(
3
), pp.
371
376
.
24.
Knudsen
,
J. D.
, and
Katz
,
D. L.
, 1958,
Fluid Dynamics and Heat Transfer
,
McGrow-Hill
, New York.
25.
Hatton
,
A. P.
,
James
,
D. D.
, and
Swire
,
H. W.
, 1971, “
Combined Forced and Natural Convection with Low Speed Air Flow over Horizontal Cylinders
,”
J. Fluid Mech.
0022-1120,
42
, pp.
17
31
.
26.
Mahfouz
,
F. M.
, 2003, “
Transient Free Convection from a Horizontal Cylinder Placed in a Micropolar Fluid
,”
Heat Mass Transfer
0947-7411,
39
, pp.
455
462
.
27.
Mahfouz
,
F. M.
, 2004, “
Natural Convection from an Elliptic Tube with Major Axis Horizontal and Placed in Micropolar Fluid
,”
Int. J. Heat Mass Transfer
0017-9310,
47
(
6–7
), pp.
1413
1422
.
You do not currently have access to this content.