Flows in porous media may be modeled using two major classes of approaches: (a) a macroscopic approach, where volume-averaged semiempirical equations are used to describe flow characteristics, and (b) a microscopic approach, where small-scale flow details are simulated by considering the specific geometry of the porous medium. In the first approach, small-scale details are ignored and the information so lost is represented in the governing equations using an engineering model. In the second, the intricate geometry of the porous structures is accounted for and the transport through these structures computed. The latter approach is computationally expensive if the entire physical domain were to be simulated. Computational time can be reduced by exploiting periodicity when it exists. In the present work we carry out a direct simulation of the transport in an open-cell metal foam using a periodic unit cell. The foam geometry is created by assuming the pore to be spherical. The spheres are located at the vertices and at the center of the unit cell. The periodic foam geometry is obtained by subtracting the unit cell cube from the spheres. Fluid and heat flow are computed in the periodic unit cell. Our objective in the present study is to obtain the effective thermal conductivity, pressure drop, and local heat transfer coefficient from a consistent direct simulation of the open-cell foam structure. The computed values compare well with the existing experimental measurements and semiempirical models for porosities greater than 94%. The results and the merits of the present approach are discussed.

1.
Ashby
,
M. F.
,
Evans
,
A.
,
Fleck
,
N. A.
,
Gibson
,
L. J.
,
Hutchinson
,
J. W.
, and
Wadley
,
H. J. G.
, 2000,
Metal Foams: A Design Guide
,
Butterworth-Heinemann
,
Boston
.
2.
Boomsma
,
K.
,
Poulikakos
,
D.
, and
Zwick
,
F.
, 2003, “
Metal Foams as Compact High Performance Heat Exchangers
,”
Mech. Mater.
0167-6636,
35
, pp.
1161
1176
.
3.
Lu
,
T. J.
,
Stone
,
H. A.
, and
Ashby
,
M. F.
, 1998, “
Heat Transfer in Open-Cell Metal Foams
,”
Acta Mater.
1359-6454,
46
, pp.
3619
3635
.
4.
Ozmat
,
B.
,
Leyda
,
B.
, and
Benson
,
B.
, 2004, “
Thermal Applications of Open-Cell Metal Foams
,”
Mater. Manuf. Processes
1042-6914,
19
, pp.
839
862
.
5.
Boomsma
,
K.
, and
Poulikakos
,
D.
, 2001, “
On the Effective Thermal Conductivity of a Three-Dimensionally Structured Fluid-Saturated Metal Foam
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
827
836
.
6.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
, 1999, “
The Effective Thermal Conductivity of High Porosity Fibrous Metal Foams
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
466
471
.
7.
Fourie
,
J. G.
, and
Du Plessis
,
J. P.
, 2002, “
Pressure Drop Modeling in Cellular Metallic Foams
,”
Chem. Eng. Sci.
0009-2509,
57
, pp.
2781
2789
.
8.
Boomsma
,
K.
,
Poulikakos
,
D.
, and
Ventikos
,
Y.
, 2003, “
Simulations of Flow Through Open Cell Foams Using an Idealized Periodic Cell Structure
,”
Int. J. Heat Fluid Flow
0142-727X,
24
, pp.
825
834
.
9.
Krishnan
,
S.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
, 2005, “
A Two-Temperature Model For Solid-Liquid Phase Change in Metal Foams
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
995
1004
.
10.
DuPlessis
,
P.
,
Montillet
,
A.
,
Comiti
,
J.
, and
Legrand
,
J.
, 1994, “
Pressure Drop Prediction For Flow Through High Porosity Metallic Foams
,”
Chem. Eng. Sci.
0009-2509,
49
, pp.
3545
3553
.
11.
Krishnan
,
S.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
, 2004, “
A Two-Temperature Model For the Analysis of Passive Thermal Control Systems
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
628
637
.
12.
Kaviany
,
M.
, 1995,
Principles of Heat Transfer in Porous Media
,
Springer-Verlag
, New York.
13.
Amiri
,
A.
, and
Vafai
,
K.
, 1994, “
Analysis of Dispersion Effects and Non-Thermal Equilibrium, Non-Darcian, Variable Porosity Incompressible Flow Through Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
37
, pp.
939
954
.
14.
Bhattacharya
,
A.
,
Calmidi
,
A. A.
, and
Mahajan
,
R. L.
, 2002, “
Thermophysical Properties of High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
1017
1031
.
15.
Thomson
,
W.
, 1887, “
On the Division of Space With Minimum Partitional Area
,”
Philos. Mag.
0031-8086,
5
, pp.
645
654
.
16.
Weaire
,
D.
, 2001, “
A Philomorph Looks at Foam
,”
Proc. Am. Philos. Soc.
0003-049X,
145
, pp.
564
574
.
17.
Phelan
,
R.
,
Weaire
,
D.
, and
Brakke
,
K.
, 1995, “
Computation of Equilibrium Foam Structures Using the Surface Evolver
,”
Exp. Math.
1058-6458,
4
, pp.
181
192
.
18.
Dharmasena
,
K. P.
, and
Wadley
,
H. N. G.
, 2002, “
Electrical Conductivity of Open-Cell Metal Foams
,”
J. Mater. Res.
0884-2914,
17
, pp.
625
631
.
19.
Patankar
,
S. V.
,
Liu
,
C. H.
, and
Sparrow
,
E. M.
, 1977, “
Fully Developed Flow and Heat Transfer in Ducts Having Streamwise-Periodic Variations of Cross-Sectional Area
,”
ASME J. Heat Transfer
0022-1481,
99
, pp.
180
186
.
20.
Murthy
,
J. Y.
, and
Mathur
,
S.
, 1997, “
Periodic Flow and Heat Transfer Using Unstructured Meshes
,”
Int. J. Numer. Methods Fluids
0271-2091,
25
, pp.
659
677
.
21.
Fluent Inc., User’s Guide for GAMBIT 2.0, 2002.
22.
Fluent Inc., User’s Guide for FLUENT 6.0, 2002.
23.
Mathur
,
S. R.
, and
Murthy
,
J. Y.
, 1997, “
A Pressure-Based Method for Unstructured Meshes
,”
Numer. Heat Transfer, Part B
1040-7790,
31
, pp.
195
216
.
24.
Kumar
,
S.
, and
Murthy
,
J. Y.
, 2005, “
A Numerical Technique For Computing Effective Thermal Conductivity of Fluid-Particle Mixtures
,”
Numer. Heat Transfer, Part B
1040-7790,
47
, pp.
555
572
.
25.
Lemlich
,
R.
, 1978, “
A Theory For the Limiting Conductivity of Polyhedral Foam at Low Density
,”
J. Colloid Interface Sci.
0021-9797,
64
, pp.
107
110
.
26.
Paek
,
J. W.
,
Kang
,
B. H.
,
Kim
,
S. Y.
, and
Hyun
,
J. M.
, 2000, “
Effective Thermal Conductivity and Permeability of Aluminum Foam Materials
,”
Int. J. Thermophys.
0195-928X,
21
, pp.
453
464
.
27.
Koch
,
D. L.
, and
Brady
,
J. F.
, 1985, “
Dispersion in Fixed Beds
,”
J. Fluid Mech.
0022-1120,
154
, pp.
399
427
.
28.
Koch
,
D. L.
, and
Brady
,
J. F.
, 1985, “
The Effective Diffusivity of Fibrous Media
,”
AIChE J.
0001-1541,
32
, pp.
575
591
.
29.
Vafai
,
K.
, and
Tien
,
C. L.
, 1982, “
Boundary and Inertia Effects on Convective Mass Transfer in Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
25
, pp.
1183
1190
.
30.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
, 2000, “
Forced Convection in High Porosity Metal Foams
,”
ASME J. Heat Transfer
0022-1481,
122
, pp.
557
565
.
You do not currently have access to this content.