The conservation element and solution element (CE/SE) method, an accurate and efficient explicit numerical method for resolving moving discontinuities in fluid mechanics problems, is used to solve three-dimensional phase-change problems. Several isothermal phase-change cases are studied and comparisons are made to existing analytical solutions. The CE/SE method is found to be accurate, robust, and efficient for the numerical modeling of phase-change problems.

1.
Sulfredge
,
C. D.
,
Chow
,
L. C.
, and
Tagavi
,
K. A.
,
1992
, “
Void Formation in Radial Solidification of Cylinders
,”
ASME J. Sol. Energy Eng.
,
114
, pp.
32
39
.
2.
Sˇarler
,
B.
,
1995
, “
Stefan’s Work on Solid-Liquid Phase Change
,”
Eng. Anal. Boundary Elem.
,
16
, pp.
83
92
.
3.
Alexiades, V., and Solomon, A. D., 1993, Mathematical Modeling of Melting and Freezing Processes, Hemisphere, Washington, DC.
4.
Rubinstei˘n, L. I., 1971, The Stefan Problem, Translations of Mathematical Monographs, 27, American Mathematical Society, Providence.
5.
Elliott, C. M., and Ockendon, J. R., 1982, Weak and Variational Methods for Moving Boundary Problems, Pitman, New York.
6.
Crank, J., 1984, Free and Moving Boundary Problems, Clarendon Press, Oxford.
7.
Douglas
,
J.
, and
Gallie
,
T.
,
1955
, “
On the Numerical Integration of a Parabolic Differential Equation Subject to a Moving Boundary Condition
,”
Duke Math. J.
,
22
, pp.
557
571
.
8.
Boley
,
B. A.
,
1968
, “
A General Starting Solution for Melting and Solidifying Slabs
,”
Int. J. Eng. Sci.
,
6
,
89
89
.
9.
Atthey, D. R., 1975, “A Finite Difference Scheme for Melting Problems Based on the Method of Weak Solutions,” Moving Boundary Problems in Heat Flow and Diffusion, J. R., Ockendon, and W. R., Hodgkins, eds., Clarendon Press, Oxford, p. 182.
10.
Ockendon, J. R., 1975, “Techniques of Analysis,” Moving Boundary Problems in Heat Flow and Diffusion, J. R., Ockendon, and W. R., Hodgkins, eds., Clarendon Press, Oxford, p. 138.
11.
Voller
,
V.
, and
Cross
,
M.
,
1981
, “
Accurate Solutions of Moving Boundary Problems Using the Enthalpy Method
,”
Int. J. Heat Mass Transfer
,
24
, pp.
545
556
.
12.
Celentano
,
D.
, and
Pe´rez
,
E.
,
1996
, “
A Phase-Change Temperature-Based Formulation Including General Latent Heat Effects
,”
Int. J. Numer. Methods Heat Fluid Flow
,
6
(
8
), pp.
71
79
.
13.
Chang, S. C., and To, W. M., 1991, “A New Numerical Framework for Solving Conservation Laws—The Method of Space-Time Conservation Element and Solution Element,” NASA TM 104495.
14.
Chang
,
S. C.
,
Wang
,
X. Y.
, and
Chow
,
C. Y.
,
1999
, “
The Space-Time Conservation Element and Solution Element Method: A New High Resolution and Genuinely Multidimensional Paradigm for Solving Conservation Laws
,”
J. Comput. Phys.
,
156
, pp.
89
136
.
15.
Chang
,
S. C.
,
Wang
,
X. Y.
, and
To
,
W. M.
,
2000
, “
Application of the Space-Time Conservation Element and Solution Element Method to One-Dimensional Convection-Diffusion Problems
,”
J. Comput. Phys.
,
165
, pp.
189
215
.
16.
Wang, X. Y., Chow, C. Y., and Chang, S. C., 1998, “The Space-Time Conservation Element and Solution Element Method—A New High-Resolution and Genuinely Multidimensional Paradigm for Solving Conservation Laws II, Numerical Simulation of Shock Waves and Contact Discontinuities,” NASA/TM-1998-208844.
17.
Loh
,
C. Y.
,
Hultgren
,
L. S.
, and
Chang
,
S. C.
,
2001
, “
Wave Computation in Incompressible Flow Using the Space-Time Conservation Element and Solution Element Method
,”
AIAA J.
,
39
(
5
), pp.
794
801
.
18.
Loh
,
C. Y.
, and
Zaman
,
K. B. M. Q.
,
2002
, “
Numerical Investigation of ‘Transonic Resonance’ With a Convergent-Divergent Nozzle
,”
AIAA J.
,
40
(
12
), pp.
2393
2401
.
19.
Wang, X. Y., Chang, S. C., and Jorgenson, P. C. E., 2000, “Prediction of Sound Waves Propagating Through a Nozzle Without/With a Shock Wave Using the Space-Time CE/SE Method,” AIAA Paper 2000-0222, presented at 38th AIAA Aerospace Sciences Meeting, Reno.
20.
Guo, Y., Hsu, A. T., Wu, J., Yang, Z., and Oyedrian, A., 2000, “Extension of CE/SE Method to 2D Viscous Flows,” 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, July 17–19, 2000.
21.
Chen, K. H., and Liu, N. S., 2000, “Navier-Stokes Solution of the FLUX Code: A Module for the NCC Solver Using the Concept of Space-Time Conservation Element and Solution Element,” AIAA 2000-0455.
22.
Molls
,
T.
, and
Molls
,
F.
,
1998
, “
Space-Time Conservation Method Applied to Saint Venant Equations
,”
J. Hydraul. Eng.
,
125
(
5
), pp.
501
508
.
23.
Yang
,
D.
,
Yu
,
S. T.
, and
Zhao
,
J.
,
2001
, “
Convergence and Error Bound Analysis for the Space-Time CESE Method
,”
Numer. Methods Partial Differ. Equ.
,
17
, pp.
64
78
.
24.
Liu, N. S., and Chen, K. H., 1999, “FLUX: An Alternative Flow Solver for the National Combustion Code,” AIAA Paper, 99–1079.
25.
Chang
,
S. C.
,
1995
, “
The Method of Space-Time Conservation Element and Solution Element—A New Approach for Solving the Navier-Stokes and Euler Equations
,”
J. Comput. Phys.
,
119
, pp.
295
324
.
26.
Chang, S. C., Yu, S. T., Himansu, A., Wang, X. Y., Chow, C. Y., and Loh, C. Y., 1996, The Method of Space-Time Conservation Element and Solution Element—A New Paradigm for Numerical Solution of Conservation Laws, Computational Fluid Dynamics Review, UK.
27.
Cockburn, B., 1999, “Discontinuous Galerkin Methods for Convection Dominate Problems,” High-Order Methods for Computational Physics, T. J., Barth, and H., Deconinck, eds., Springer, Berlin, pp. 69–224.
28.
Babusˇka
,
I.
,
Baumann
,
C. E.
, and
Oden
,
J. T.
,
1999
, “
A Discontinuous hp Finite Element Method for Diffusion Problems: 1-D Analysis
,”
Comput. Math. Appl.
,
37
, pp.
103
122
.
29.
Engel
,
G.
,
Garikipati
,
K.
,
Hughes
,
T. J. R.
,
Larson
,
M. G.
,
Mazzei
,
L.
, and
Taylor
,
R. L.
,
2002
, “
Continuous/Discontinuous Finite Element Approximations of Fourth-Order Elliptic Problems in Structural and Continuum Mechanics With Applications to Thin Beams and Plates, and Strain Gradient Elasticity
,”
Comput. Methods Appl. Mech. Eng.
,
191
, pp.
3669
3750
.
30.
Ayasoufi
,
A.
, and
Keith
,
T. G.
,
2003
, “
Application of the Conservation Element and Solution Element Method in Numerical Modeling of Heat Conduction With Melting and/or Freezing
,”
Int. J. Numer. Methods Heat Fluid Flow
,
13
(
4
), pp.
448
472
.
31.
Ayasoufi
,
A.
, and
Keith
,
T. G.
,
2004
, “
Application of the Conservation Element and Solution Element Method in Numerical Modeling of Axisymmetric Heat Conduction With Melting and/or Freezing
,”
JSME Int. J., Ser. B
,
47
(
1
), pp.
115
125
.
32.
Wang
,
X. Y.
, and
Chang
,
S. C.
,
1999
, “
A 2D Non-Splitting Unstructured Triangular Mesh Euler Solver Based on the Space Time Conservation Element and Solution Element Method
,”
Comput. Fluid Dyn. J.
,
8
(
2
), pp.
309
325
.
33.
Zhang
,
Z. C.
,
Yu
,
S. T.
, and
Chang
,
S. C.
,
2002
, “
A Space-Time Conservation Element and Solution Element Method for Solving the Two- and Three-Dimensional Unsteady Euler Equations Using Quadrilateral and Hexahedral Meshes
,”
J. Comput. Phys.
,
175
, pp.
168
199
.
34.
Liu, N. S., and Chen, K. H., 2001, “An Alternative Flow Solver for the NCC—The FLUX Code and Its Algorithm,” 39th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV.
35.
Lunardini, V. J., 1981, Heat Transfer in Cold Climates, Van Nostrand Reinhold, New York.
36.
Voller
,
V. R.
, and
Swaminathan
,
R.
,
1991
, “
General Source-Based Method for Solidification Phase Change
,”
Numer. Heat Transfer, Part B
,
19
, pp.
175
189
.
You do not currently have access to this content.