The working processes of metallic materials at high strain rate like forging, stamping and machining often induce high temperatures that are difficult to quantify precisely. In this work we, developed a high-speed broad band visible pyrometer using an intensified CCD camera (spectral range: 0.4 μm–0.9 μm). The advantage of the visible pyrometry technique is to limit the temperature error due to the uncertainties on the emissivity value and to have a good spatial resolution (3.6 μm) and a large observation area. This pyrometer was validated in the case of high speed machining and more precisely in the orthogonal cutting of a low carbon steel XC18. The cutting speed varies between 22 ms−1 and 60 ms−1. The experimental device allows one to visualize the evolution of the temperature field in the chip according to the cutting speed. The maximum temperature in the chip can reach 730°C and minimal temperature which can be detected is around 550°C.

1.
Milton, C., and Shaw, M. C., 1984, Metal Cutting Principles, Clarendon Press, Oxford Science Publication, UK.
2.
Loewen
,
E. G.
, and
Shaw
,
M. C.
,
2000
, “
On the Analysis of Cutting Tool Temperature
,”
Trans. Am. Soc. Mech. Engrs.
,
71
, pp.
217
231
.
3.
Hastings
,
W. F.
,
Mathews
,
P.
, and
Oxley
,
P. L. B.
,
1980
, “
A Machining Theory for Predicting Chip Geometry, Cutting Forces Etc. From Material Properties and Cutting Conditions
,”
Proc. R. Soc. London, Ser. A
,
371
, pp.
569
587
.
4.
Doyle
,
E. D.
,
Homme
,
J. G.
, and
Tabor
,
D.
,
1979
, “
Frictional Interaction Between Chip and Rake Face in Continuous Chip Formation
,”
Proc. R. Soc. London, Ser. A
,
3666
, pp.
176
183
.
5.
Grzesik
,
W.
,
2003
, “
Friction Behavior of Heat Isolating Coating in Machining: Mechanical, Thermal and Energy-Based Considerations
,”
Int. J. Mach. Tools Manuf.
,
43
, pp.
145
150
.
6.
Sutter
,
G.
,
Faure
,
L.
,
Molinari
,
A.
,
Ranc
,
N.
, and
Pina
,
V.
,
2003
, “
An Experimental Technique for the Measurement of Temperature Fields for the Orthogonal Cutting in High Speed Machining
,”
Int. J. Mach. Tools Manuf.
,
43
, pp.
671
678
.
7.
Ay
,
H.
, and
Yang
,
W. J.
,
1998
, “
Heat Transfer and Life of Metal Cutting Tools in Turning
,”
Int. J. Heat Mass Transfer
,
43
, pp.
613
623
.
8.
Planck
,
M.
,
1901
, “
Distribution of Energy
,”
Ann. Phys. (N.Y.)
,
4, 3
, pp.
553
563
.
9.
Childs
,
P. R. N.
,
Greenwood
,
J. R.
, and
Long
,
C. A.
,
2000
, “
Review of Temperature Measurement
,”
Rev. Sci. Instrum.
,
71, 8
, pp.
2959
2978
.
10.
Murray
,
T. P.
,
1967
, “
Polaradiometer: A New Instrument for Temperature Measurement
,”
Rev. Sci. Instrum.
,
38
, pp.
791
798
.
11.
Herve´
,
P.
,
1983
, “
Mesure simultane´e de la tempe´rature de surface et de son e´missivite´
,”
Measurement
,
485
, pp.
20
24
.
12.
Duvaut
,
T.
,
Georgeault
,
D.
, and
Beaudoin
,
J. L.
,
1995
, “
Multiwavelength Infrared Pyrometry: Optimization and Computer Simulations
,”
Infrared Phys. Technol.
,
36
, pp.
1089
1103
.
13.
Zehnder
,
A. T.
,
Guduru
,
P. R.
,
Rosakis
,
A. J.
, and
Ravichandran
,
G.
,
2000
, “
Million Frames Per Second Infrared Imaging System
,”
Rev. Sci. Instrum.
,
71, 10
, pp.
3762
3768
.
14.
Guduru
,
P. R.
,
Ravichandran
,
G.
, and
Rosakis
,
A. J.
,
2001
, “
Observation of Transient High Vortical Microstructures in Solids During Adiabatic Shear Banding
,”
Phys. Rev. E
,
64
, pp.
1
6
.
15.
Guduru
,
P. R.
,
Zehnder
,
A. T.
,
Rosakis
,
A. J.
, and
Ravichandran
,
G.
,
2001
, “
Dynamic Full Field Measurements of Crack Tip Temperatures
,”
Eng. Fract. Mech.
,
68
, pp.
1535
1556
.
16.
Ranc
,
N.
,
Pina
,
V.
, and
Herve´
,
P.
,
2000
, “
Optical Measurements of Phase Transition and Temperature in Adiabatic Shear Bands in Titanium Alloys
,”
J. Phys. IV
,
10
, pp.
347
352
.
17.
Modest, M. F., 1993, Radiative Heat Transfert, McGraw–Hill, New York.
18.
Palik, E. D., 1985, Handbook of Optical Constants, Academic, New York.
19.
Piriou
,
B.
,
1973
, “
Mise au point sur les facteurs d’e´mission
,”
Rev. Int. Hautes Temp. Refract.
,
10
, pp.
283
295
.
20.
Hampartsoumian
,
E.
,
Hainsworth
,
D.
,
Taylor
,
J. M.
, and
Williams
,
A.
,
2001
, “
The Radiant Emissivity of Some Materials at High Temperatures-Review
,”
J. Inst. Energy
,
74
, pp.
91
99
.
21.
Hiernaut
,
J. P.
,
Beukers
,
R.
,
Hoch
,
M.
,
Matsui
,
T.
, and
Ohse
,
R. W.
,
1986
, “
Determination of the Melting Point and of the Spectral and Total Emissivities of Tungsten, Tantalum and Molybdenum in the Solid and Liquid States With a Six-Wavelength
,”
High Temp. - High Press.
,
18
, pp.
627
633
.
22.
Dunkle, R. V., 1960, “Thermal Radiation Characteristics of Surfaces,” Theory and fundamental research in heat transfer: Proceedings of the Annual Meeting of the American Society of Mechanical Engineers, New York.
23.
Herve´, P., 1977, “Influence de l’e´tat de surface sur le rayonnement thermique des mate´riaux solides,” Ph.D. thesis, Paris VI.
24.
Antoni Zdziobek
,
A.
,
Pina
,
V.
,
Herve´
,
P.
, and
Durand
,
F.
,
1997
, “
A Radiative Thermal Analysis Method for Phase Change Determination of Strictly Controlled Refractory Alloys
,”
High Temp. Mater. Sci.
,
37
, pp.
97
114
.
25.
Birkebak
,
R. C.
, and
Eckert
,
E. R. G.
,
1965
, “
Effects of Roughness of Metal Surfaces on Angular Distribution of Monochromatic Reflected Radiation
,”
ASME J. Heat Transfer
,
87
, pp.
85
94
.
26.
Sutter
,
G.
,
Molinari
,
A.
,
Faure
,
L.
,
Klepaczko
,
J. R.
, and
Dudzinski
,
D.
,
1998
, “
An Experimental Study of High Speed Orthogonal Cutting
,”
ASME J. Manuf. Sci. Eng.
,
12
, pp.
169
172
.
27.
Vernaza-Pena
,
K. M.
,
Mason
,
J. J.
, and
Li
,
M.
,
2001
, “
Experimental Study of the Temperature Field Generated During Orthogonal Machining of an Aluminum Alloy
,”
Exp. Mech.
,
42, 2
, pp.
221
229
.
28.
Muller, B., 2001, “Temperature Measurements With a Fibre-Optic Two-Color Pyrometer,” Scientific Fundamentals of High Speed Cutting, edited by H. Schulz, Carl Hanser Verlag, Mu¨nchen-Wien, pp. 181–186.
29.
Touloukian, Y. S., and DeWitt, D. P., 1970, Thermophysical Properties of Matter—Thermal Radiative Properties, IFI/Plenum, New York, Washington, Vol. 7.
You do not currently have access to this content.