In the present work, a computational model is developed to investigate and predict the thermal performance of high melting point phase change material during its melting and solidification processes within a cylindrical enclosure. In this model the phases are assumed to be homogeneous and a source term, S, arises from melting or solidification process is considered as a function of the latent heat of fusion and the liquid phase fraction. The numerical model is verified with a test problem and an experiment is performed to assess the validity of the assumptions of it and an agreement between experimental and computational results is achieved. The findings show that utilizing of PCMs of high melting points is a promising technique especially in space applications.

1.
Harris
,
K. T.
,
Haji-Sheikh
,
A.
, and
Agwu Nnanna
,
A. G.
,
2001
, “
Phase-Change Phenomena in Porous Media—A Non-Local Thermal Equilibrium Model
,”
Int. J. Heat Mass Transfer
,
44
, pp.
1619
-
1625
.
2.
Crank, J., 1984, Free and Moving Boundary Problems, Claredon Press, Oxford.
3.
Voller
,
V. R.
,
Swaminathan
,
C. R.
, and
Thoma
,
B. G.
,
1990
, “
Fixed Grid Techniques for Phase Change Problems: Review
,”
Int. J. Numer. Methods Eng.
,
30
, pp.
875
898
.
4.
Voller
,
V. R.
,
1990
, “
Fast Implicit Finite-Difference Method for the Analysis of Phase Change Problem
,”
Numer. Heat Transfer, Part B
,
17
, pp.
155
169
.
5.
Shamsunder
,
N.
, and
Sparrow
,
E. M.
,
1975
, “
Analysis of Multi-Dimensional Conduction Phase Change via the Enthalpy Model
,”
ASME J. Heat Transfer
,
97
, pp.
330
340
.
6.
Furzeland
,
R. M.
,
1980
, “
A Comparative Study of Numerical Methods for Moving Boundary Problems
,”
J. Inst. Math. Appl.
,
19
, pp.
411
429
.
7.
Ghasemi
,
B.
, and
Molki
,
M.
,
1999
, “
Melting of Unfixed Solids in Square Cavities
,”
Int. J. Heat Fluid Flow
,
20
, pp.
446
452
.
8.
Asako
,
Y.
,
Faghri
,
M.
,
Charmchi
,
M.
, and,
Bahrami
,
P. A.
,
1994
, “
Numerical Solution for Melting of Unfixed Rectangular Phase-Change Material Under Low-Gravity Environment
,”
Numer. Heat Transfer, Part A
,
25
, pp.
191
208
.
9.
Zivkovic
,
B.
, and
Fujii
,
I.
,
2001
, “
An Analysis of Isothermal Phase Change of Phase Change Material Within Rectangular and Cylindrical Containers
,”
Sol. Energy
,
70
(
1
), pp.
51
61
.
10.
Rady
,
M. A.
, and
Mohanty
,
A. K.
,
1996
, “
Natural Convection During Melting and Solidification of Pure Metals in a Cavity
,”
Numer. Heat Transfer, Part A
,
29
, pp.
49
63
.
11.
Lacroix
,
M.
,
1993
, “
Numerical Simulation of a Shell-and-Tube Latent Heat Thermal Energy Storage Unit
,”
Sol. Energy
,
50
(
4
), pp.
357
367
.
12.
Patrick
,
B.
, and
Lacroix
,
M.
,
1998
, “
Numerical Simulation of a Multi-Layer Latent Heat Thermal Energy Storage System
,”
Int. J. Energy Res.
,
22
, pp.
1
15
.
13.
Kurklu
,
A.
,
Wheldon
,
A.
, and
Hadley
,
P.
,
1996
, “
Mathematical Modeling of the Thermal Performance of a Phase-Change Material (PCM) Store: Cooling Cycle
,”
Journal of Applied Thermal Engineering
,
16
(
7
), pp.
613
623
.
14.
Jianfeg
,
W.
,
Ouyang
,
Y.
, and
Chen
,
G.
,
2001
, “
Experimental Study of Charging Process of a Cylindrical Heat Storage Capsule Employing Multiple-Phase-Change Materials
,”
Int. J. Energy Res.
,
25
, pp.
439
447
.
15.
Casano
,
G.
, and
Piva
,
S.
,
2002
, “
Experimental and Numerical Investigation of the Steady Periodic Solid-Liquid Phase-Change Heat Transfer
,”
Int. J. Heat Mass Transfer
,
45
, pp.
4181
4190
.
16.
Incropera, F. P., and Dewitt, D. P., 2001, Fundamentals of Heat and Mass Transfer, fourth ed., Wiley, New York.
You do not currently have access to this content.