Abstract

The turbulence structure and passive scalar (heat) transport in plane Couette flow at Reynolds number equal to 3000 (based on the relative speed and distance between the walls) are studied using direct numerical simulation (DNS). The numerical model is a three-dimensional trilinear Galerkin finite element code. It is found that the structures of the mean velocity and temperature in plane Couette flow are similar to those in forced channel flow, but the empirical coefficients are different. The total (turbulent and viscous) shear stress and total (turbulent and conductive) heat flux are constant throughout the channel. The locations of maximum root-mean-square streamwise velocity and temperature fluctuations are close to the walls, while the location of maximum root-mean-square spanwise and vertical velocity fluctuations are at the channel center. The correlation coefficients between velocities and temperature are fairly constant in the center core of the channel. In particular, the streamwise velocity is highly correlated with temperature (correlation coefficient ≈−0.9). At the channel center, the turbulence production is unable to counterbalance the dissipation, in which the diffusion terms (both turbulent and viscous) bring turbulent kinetic energy from the near-wall regions toward the channel center. The snapshots of the DNS database help explain the nature of the correlation coefficients. The elongated wall streaks for both streamwise velocity and temperature in the viscous sublayer are well simulated. Moreover, the current DNS shows organized large-scale eddies (secondary rotations) perpendicular to the direction of mean flow at the channel center.

1.
Eckelmann
,
H.
,
1974
, “
The Structure of the Viscous Sublayer and the Adjacent Wall Region in a Turbulent Channel Flow
,”
J. Fluid Mech.
,
65
, pp.
439
459
.
2.
Hussain
,
A. K. M. F.
, and
Reynolds
,
W. C.
,
1975
, “
Measurements in Fully Developed Turbulent Channel Flow
,”
J. Fluids Eng.
,
97
, pp.
568
568
.
3.
Kreplin
,
H.-P.
, and
Eckelmann
,
H.
,
1979
, “
Behavior of the Three Fluctuating Velocity Components in the Wall Region of a Turbulent Channel Flow
,”
Phys. Fluids
,
22
(
7
), pp.
1233
1239
.
4.
Kim
,
J.
,
Moin
,
P.
, and
Moser
,
R.
,
1987
, “
Turbulence Statistics in Fully Developed Channel Flow at Low Reynolds Number
,”
J. Fluid Mech.
,
177
, pp.
133
166
.
5.
Moser
,
R. D.
,
Kim
,
J.
, and
Mansour
,
N. N.
,
1999
, “
Direct Numerical Simulation of Turbulent Channel Flow Up to Reτ=590,
Phys. Fluids
,
11
, pp.
943
945
.
6.
Abe
,
H.
,
Kawamura
,
H.
, and
Matsuo
,
Y.
,
2001
, “
Direct Numerical Simulation of a Fully Developed Turbulent Channel Flow With Respect to the Reynolds Number Dependence
,”
J. Fluids Eng.
,
123
, pp.
382
393
.
7.
Lundbladh
,
A.
, and
Johansson
,
A. V.
,
1991
, “
Direct Simulation of Turbulent Spots in Plane Couette Flow
,”
J. Fluid Mech.
,
229
, pp.
499
516
.
8.
Daviaud
,
F.
,
Hegseth
,
J.
, and
Berge´
,
P.
,
1992
, “
Subcritical Transition to Turbulence in Plane Couette Flow
,”
Phys. Rev. Lett.
,
69
, pp.
2511
2514
.
9.
Malerud
,
S.
,
Maloy
,
K. J.
, and
Goldburg
,
W. I.
,
1995
, “
Measurement of Turbulent Velocity Fluctuations in a Planar Couette Cell
,”
Phys. Fluids
,
7
, pp.
1949
1955
.
10.
Lee, H. J., and Kim, J., 1991, “The Structure of Turbulence in a Simulated Plane Couette Flow,” in Paper 5-3, Proc. 8th Symposium on Turbulent Shear Flows, Munich.
11.
Bech
,
K. H.
,
Tillmark
,
N.
,
Alfredsson
,
P. H.
, and
Andersson
,
Helge I.
,
1995
, “
An Investigation of Turbulent Plane Couette Flow at Low Reynolds Numbers
,”
J. Fluid Mech.
,
286
, pp.
291
325
.
12.
Komminaho
,
J.
,
Lundbladh
,
A.
, and
Johansson
,
A. V.
,
1996
, “
Very Large Structures In Plane Turbulent Couette Flow
,”
J. Fluid Mech.
,
320
, pp.
259
285
.
13.
Papavassiliou
,
D. V.
, and
Hanratty
,
T. J.
,
1997
, “
Interpretation of Large-Scale Structures Observed in a Turbulent Plane Couette Flow
,”
Int. J. Heat Fluid Flow
,
18
, pp.
55
69
.
14.
Bech
,
K. H.
, and
Andersson
,
H. I.
,
1996
, “
Secondary Flow in Weakly Rotating Turbulent Plane Couette Flow
,”
J. Fluid Mech.
,
317
, pp.
195
214
.
15.
Bech
,
K. H.
, and
Andersson
,
H. I.
,
1997
, “
Turbulent Plane Couette Flow Subject to Strong System Rotation
,”
J. Fluid Mech.
,
347
, pp.
289
314
.
16.
Sullivan
,
P. P.
,
McWilliams
,
J. C.
, and
Moeng
,
C.-H.
,
2000
, “
Simulation of Turbulent Flow Over Idealized Water Waves
,”
J. Fluid Mech.
,
404
, pp.
47
85
.
17.
Kim, J., and Moin, P., 1989, “Transport of Passive Scalar in a Turbulent Channel Flow,” Turbulent Shear Flow J.-C. Andre, J. Cousteix, F. Durst, B. E. Launder, F. W. Schmidt, and J. H. Whitelaw, eds., Springer-Verlag, Berlin, 6, pp. 85–96.
18.
Kasagi
,
N.
,
Tomita
,
Y.
, and
Kuroda
,
A.
,
1992
, “
Direct Numerical Simulation of Passive Scalar Field in a Turbulent Channel Flow
,”
Journal of Heat Transfer
,
114
, pp.
598
606
.
19.
Kasagi
,
N.
, and
Shikazono
,
N.
,
1995
, “
Contribution of Direct Numerical Simulation to Understanding and Modelling Turbulent Transport
,”
Proc. R. Soc. London, Ser. A
,
451
, pp.
257
292
.
20.
Kawamura
,
H.
,
Ohsaka
,
K.
,
Abe
,
H.
, and
Yamamoto
,
K.
,
1998
, “
DNS of Turbulent Heat Transfer in Channel Flow With Low to Medium-High Prandtl Number Fluid
,”
Int. J. Heat Mass Transf.
,
19
, pp.
482
491
.
21.
Kawamura
,
H.
,
Abe
,
H.
, and
Matsuo
,
Y.
,
1999
, “
DNS of Turbulent Heat Transfer in Channel Flow With Respect to Reynolds and Prandtl Number Effects
,”
Int. J. Heat Fluid Flow
,
20
, pp.
196
207
.
22.
Na
,
Y.
, and
Hanratty
,
T. J.
,
2000
, “
Limiting Behavior of Turbulent Scalar Transport Close to a Wall
,”
Int. J. Heat Mass Transf.
,
43
, pp.
1749
1758
.
23.
Tiselj
,
I.
,
Bergant
,
R.
,
Mavko
,
B.
,
Bajsic
,
I.
, and
Hetsroni
,
G.
,
2001
, “
DNS of Turbulent Heat Transfer in Channel Flow With Heat Conduction in the Solid Wall
,”
J. Heat Transfer
,
123
, pp.
849
857
.
24.
Torii
,
S.
, and
Yang
,
W.-J.
,
1997
, “
Heat Transfer Analysis of Turbulent Parallel Couette Flows Using Anisotropic k−ε Model
,”
Numer. Heat Transfer, Part A
,
31
, pp.
223
234
.
25.
Liu
,
C.-H.
, and
Leung
,
D. Y. C.
,
2001
, “
Development of a Finite Element Solution for the Unsteady Navier-Stokes Equations Using Projection Method and Fractional-θ-Scheme
,”
Computer Methods in Applied Mechanics and Engineering
,
190
(
32–33
), pp.
4301
4317
.
26.
Liu, C.-H., 2001, “A Cubic Finite Element Solution to the Unsteady Incompressible Navier-Stokes Equations,” Computer Methods in Applied Mechanics and Engineering, submitted.
27.
Warsi, Z. U. A., 1992, Fluid Dynamics: Theoretical and Computational Approaches, CRC Press.
28.
Zˇukauskas, A., and Sˇlancˇiauskas, A., 1987, Heat Transfer in Turbulent Fluid Flows, He´misphere Publishing Corporation.
29.
Yamamoto
,
Y.
,
Kunugi
,
T.
, and
Serizawa
,
A.
,
2001
, “
Turbulence Statistics and Scalar Transport in an Open-Channel Flow
,”
Journal of Turbulence
,
2
, pp.
1
16
.
30.
Aydin
,
E. M.
, and
Leutheusser
,
H. I.
,
1991
, “
Plane-Couette Flow Between Smooth and Rough Walls
,”
Exp. Fluids
,
11
, pp.
302
312
.
31.
Handler
,
R. A.
,
Saylor
,
J. R.
,
Leighton
,
R. I.
, and
Rovelstad
,
A. L.
,
1999
, “
Transport of a Passive Scalar at a Shear-Free Boundary in Fully Developed Turbulent Open Channel Flow
,”
Phys. Fluids
,
11
(
9
), pp.
2607
2625
.
32.
Calmet
,
I.
, and
Magnaudet
,
J.
,
1997
, “
Large-Eddy Simulation of High-Schmidt Number Mass Transfer in a Turbulent Channel Flow
,”
Phys. Fluids
,
9
(
2
), pp.
438
455
.
33.
Wang
,
W.-P.
, and
Pletcher
,
R. H.
,
1996
, “
On the Large Eddy Simulation of a Turbulent Channel Flow With Significant Heat Transfer
,”
Phys. Fluids
,
8
(
12
), pp.
3354
3366
.
34.
Cabot, W., and Moin, P., 1993, “Large Eddy Simulation of Scalar Transport With the Dynamic Subgrid-Scale Model,” Large Eddy Simulation of Complex Engineering and Geophysical Flow, Boris Galperin and Steven A. Orszag, eds., Cambridge University Press, New York, pp. 141–158.
You do not currently have access to this content.