Thermally fully-developed heat transfer has been analyzed for combined electro-osmotic and pressure driven flow in a circular microtube. The two classical thermal boundary conditions of constant wall heat flux and constant wall temperature were considered. Such a flow is established by the combination of an imposed pressure gradient and voltage potential gradient along the length of the tube. The induced flow rate and velocity profile are functions of the imposed potential gradient, electro-osmotic mobility of the fluid, the ratio of the duct radius to the Debye length, the established streamwise pressure gradient, and the fluid viscosity. The imposed voltage gradient results in Joule heating in the fluid, with an associated distributed volumetric source of energy. For this scenario, the solution for the fully developed, dimensionless temperature profile and corresponding Nusselt number have been determined. The fully-developed Nusselt number is found to depend on the duct radius/Debye length ratio (termed the relative duct radius), the dimensionless volumetric source, and a dimensionless parameter that characterizes the relative strengths of the two driving mechanisms. This parameter can take on both positive and negative values, depending on the signs of the streamwise voltage and pressure gradients imposed. Analytical results are presented and discussed for a range of the governing dimensionless parameters.

1.
Gravensen
,
P.
,
Branebjerg
,
J.
, and
Jensen
,
O. S.
,
1993
, “
Microfluidics—A Review
,”
J. Micromech. Microeng.
,
3
, pp.
168
182
.
2.
Shoji
,
S.
,
Nakagawa
,
S.
, and
Esashi
,
M.
,
1990
, “
Micropump and Sample Injector for Integrated Chemical Analysis Systems
,”
Sens. Actuators
,
21
, pp.
189
1192
.
3.
van der Schoot, B. H., van den Berg, A., Jeanneret, S., and de Rooij, N. F., 1991, “A Miniaturized Chemical Analysis System Using Two Silicon Micro Pumps,” Transducers ‘91, Proceedings of the 1991 Int. Conference on Solid State Sensors and Actuators, IEEE, Piscataway, NJ, pp. 789–791.
4.
Bousse
,
L.
,
Cohen
,
C.
,
Nikiforov
,
T.
,
Chow
,
A.
,
Kopf-Sill
,
A. R.
,
Dubrow
,
R.
, and
Parce
,
J. W.
,
2000
, “
Electrokinetically Controlled Microfluidic Analysis Systems
,”
Annu. Rev. Biophys. Biomol. Struct.
,
29
, pp.
155
181
.
5.
Arulanandam
,
S.
, and
Li
,
D.
,
2000
, “
Liquid Transport in Rectangular Microchannels by Electroosmotic Pumping
,”
Colloids Surf.
,
161
, pp.
29
102
.
6.
Culbertson
,
C. T.
,
Ramsey
,
R. S.
, and
Ramsey
,
J. M.
,
2000
, “
Electro-osmotically Induced Hydraulic Pumping on Microchips: Differential Ion Transport
,”
Anal. Chem.
,
72
, pp.
2285
2291
.
7.
Dasgupta
,
P. K.
, and
Shaorong
,
L.
,
1994
, “
Electroosmosis: A Reliable Fluid Propulsion System for Flow Injection Analysis
,”
Anal. Chem.
,
66
, pp.
1792
1798
.
8.
Polson
,
N. A.
, and
Hayes
,
M. A.
,
2000
, “
Electro-Osmotic Flow Control of Fluids on a Capillary Electrophoresis Microdevice Using an Applied External Voltage
,”
Anal. Chem.
,
72
, pp.
1088
1092
.
9.
Reuss, F. F., 1809, “Charge-Induced Flow,” Proceedings of the Imperial Society of Naturalists of Moscow, 3, pp. 327–344.
10.
Probstein, R. F., 1994, Physicochemical Hydrodynamics, 2nd ed., Wiley, New York.
11.
Rice
,
C. L.
, and
Whitehead
,
R.
,
1965
, “
Electrokinetic Flow in a Narrow Cylindrical Capillary
,”
J. Phys. Chem.
,
69
, pp.
4017
4024
.
12.
Ren
,
L.
, and
Li
,
D.
,
2001
, “
Electroosmotic Flow in Hetrogeneous Microchannels
,”
J. Colloid Interface Sci.
,
243
, pp.
255
261
.
13.
Gleeson
,
J. P.
,
2002
, “
Electroosmotic Flows With Random Zeta Potential
,”
J. Colloid Interface Sci.
,
249
, pp.
217
226
.
14.
Hunter, R. J., 1981, Zeta Potential in Colloid Science, Academic Press, London.
15.
Valko
,
T. E.
,
Siren
,
H.
, and
Riekkola
,
M.
,
1999
, “
Characteristics of Electro-Osmotic Flow in Capillary Electropheresis in Water and in Organic Solvents Without Added Ionic Species
,”
J. Microcolumn Sep.
,
11
, pp.
199
208
.
16.
Burgreen
,
D.
, and
Nakache
,
F. R.
,
1964
, “
Electrokinetic Flow in Ultrafine Capillary Slits
,”
J. Phys. Chem.
,
68
, pp.
1084
1091
.
17.
Sounart
,
T. L.
, and
Baygents
,
J. C.
,
2001
, “
Electrically-Driven Fluid Motion in Channels With Streamwise Gradients of the Electrical Conductivity
,”
Colloids Surf., A
,
95
, pp.
59
75
.
18.
Paul
,
P. H.
,
Garguilo
,
M. G.
, and
Rakestraw
,
D. J.
,
1998
, “
Imaging of Pressure and Electrokinetically Driven Flows Through Open Capillaries
,”
Anal. Chem.
,
70
, pp.
2459
2467
.
19.
Taylor
,
J. A.
, and
Yeung
,
E. S.
,
1993
, “
Imaging of Hydrodynamic and Electrokinetic Flow Profiles in Capillaries
,”
Anal. Chem.
,
65
, pp.
2928
2932
.
20.
Ross
,
D.
,
Johnson
,
T. J.
, and
Locascio
,
L. E.
,
2001
, “
Imaging of Electro-Osmotic Flow in Plastic Microchannels
,”
Anal. Chem.
,
73
, pp.
2509
2515
.
21.
Cummings, E. B., 1999, “PIV Measurement of Electro-Osmotic and Pressure Driven Flow Components in Microfluidic Systems,” Microelectromechanical Systems (MEMS), MEMS-Vol. 1, ASME, New York, pp. 377–382.
22.
Yang
,
C.
,
Li
,
D.
, and
Masliyah
,
J. H.
,
1998
, “
Modeling Forced Liquid Convection in Rectangular Microchannels With Electrokinetic Effects
,”
Int. J. Heat Mass Transfer
,
41
, pp.
4229
4249
.
23.
Mala
,
G. M.
,
Li
,
D.
, and
Dale
,
J. D.
,
1997
, “
Heat Transfer and Fluid Flow in Microchannels
,”
Int. J. Heat Mass Transfer
,
40
, pp.
3079
3088
.
24.
Tao
,
L. N.
,
1962
, “
The Second Fundamental Problem in Heat Transfer of Laminar Forced Convection
,”
ASME J. Appl. Mech.
,
29
, pp.
415
420
.
25.
Maynes
,
D.
, and
Webb
,
B. W.
,
2003
, “
Fully-Developed Electro-Osmotic Heat Transfer in Microchannels
,”
Int. J. Heat Mass Transfer
,
46
, pp.
1359
1369
.
26.
Burmeister, L. C., 1983, Convective Heat Transfer, Wiley and Sons, New York.
27.
Ou, J. W., and Cheng, K. C., 1974, “Viscous Dissipation Effects on Thermal Entrance Heat Transfer in Laminar and Turbulent Pipe Flows With Uniform Wall Temperature,” ASME Paper No. 74-HT-50.
28.
Tyagi
,
V. P.
,
1966
, “
Laminar Forced Convection of a Dissipative Fluid in a Channel
,”
ASME J. Heat Transfer
,
88
, pp.
161
169
.
You do not currently have access to this content.