In a natural circular loop, the thermal convection demonstrates various spatial patterns and temporal instabilities. Problem consists in determining them with respects to thermal boundary conditions. To this end a multiple scales analysis is applied which resembles the inherent characteristic of the pattern formation in the Rayleigh-Be´nard convection. A three-dimensional nonlinear model is proposed by incorporating the flow modes derived along the analysis. The differences of thermal boundary condition are reflected by a coefficient δ. For small δ, numerical solution to the model shows that only temporal instability exists and Lorenz chaos is possible, otherwise, for large values both spatial and temporal instabilities occur leading to cellular flow and intermittency chaos. The model predicted some additional phenomena opening for experimental observation. It seems significant that this study proposes an algorithm for the control of flow stability and distribution by varying the thermal boundary condition.

1.
Greif
,
R.
,
1988
, “
Natural Circulation Loops
,”
ASME J. Heat Transfer
,
110
, pp.
1243
1258
.
2.
Zvirin
,
Y.
,
1981
, “
A Review of Natural Circulation Loops in Pressurized Water Reactors and Other Systems
,”
Nucl. Eng. Des.
,
67
, pp.
203
225
.
3.
Lorenz
,
E. N.
,
1963
, “
Deterministic Nonperiodic Flow
,”
J. Atmos. Sci.
,
20
, pp.
130
141
.
4.
Keller
,
J. B.
,
1966
, “
Periodic Oscillations in a Model of Thermal Convection
,”
J. Fluid Mech.
,
26
, pp.
599
606
.
5.
Welander
,
P.
,
1967
, “
On the Oscillatory Instability of a Differentially Heated Fluid Loop
,”
J. Fluid Mech.
,
29
, pp.
17
30
.
6.
Malkus, W. R. V., 1972, “Non-Periodic Convection at High and Low Prandtl Number,” mem. Soc. R. Sci. Liege., 4kk, pp. 125–128.
7.
Creveling
,
H. F.
,
Depaz
,
J. F.
,
Baladi
,
J. Y.
, and
Schoenhals
,
R. J.
,
1975
, “
Stability Characteristics of a Single-Phase Convection Loop
,”
J. Fluid Mech.
,
67
, pp.
65
84
.
8.
Gorman
,
M.
,
Widmann
,
P. J.
, and
Robbins
,
K. A.
,
1986
, “
Nonlinear Dynamics of Convection Loop: A Quantitative Comparison of Experiment With Theory
,”
Physica D
,
19D
, pp.
255
267
.
9.
Ehrhard
,
P.
, and
Muller
,
U.
,
1990
, “
Dynamical Behavior of Natural Convection in a Single-Phase Loop
,”
J. Fluid Mech.
,
217
, pp.
487
518
.
10.
Yorke
,
J. A.
,
Yorke
,
E. D.
, and
Mallet-Paret
,
J.
,
1987
, “
Lorenz-Like Chaos in a Partial Differential Equation for a Heated Fluid Loop
,”
Physica D
,
24D
, pp.
279
292
.
11.
Jiang
,
Y. Y.
,
Shoji
,
M.
, and
Naruse
,
M.
,
2002
, “
Boundary Condition Effects on Flow Stability in a Toroidal Thermosyphon
,”
Int. J. Heat Fluid Flow
,
23
(
1
), pp.
81
91
.
12.
Wang
,
Y.
,
Singer
,
J.
, and
Bau
,
H. H.
,
1992
, “
Controlling Chaos in a Thermal Convection Loop
,”
J. Fluid Mech.
,
237
, pp.
479
498
.
13.
Yuen
,
P. K.
, and
Bau
,
H. H.
,
1996
, “
Rendering a Subcritical Hopf Bifurcation Supercritical
,”
J. Fluid Mech.
,
317
, pp.
91
109
.
14.
Yuen
,
P. K.
, and
Bau
,
H. H.
,
1999
, “
Optimal and Adaptive Control of Chaotic Convection-Theory and Experiments
,”
Phys. Fluids
,
11
(
6
), pp.
1435
1448
.
15.
Sano
,
O.
,
1991
, “
Cellular Structure in a Natural Convection Loop and Its Chaotic Behavior, I. Experiment
,”
Fluid Dyn. Res.
,
8
, pp.
189
204
.
16.
Sano
,
O.
,
1991
, “
Cellular Structure in a Natural Convection Loop and Its Chaotic Behavior, II. Theory
,”
Fluid Dyn. Res.
,
8
, pp.
205
220
.
17.
Damerell
,
P. S.
, and
Schoenhals
,
R. J.
,
1979
, “
Flow in a Toroidal Thermosyphon With Angular Displancement of Heated and Cooled Sections
,”
ASME J. Heat Transfer
,
101
, pp.
672
676
.
18.
Lavine
,
A. S.
,
Grief
,
R.
, and
Humphrey
,
J. A. C.
,
1986
, “
Three-Dimensional Analysis of Natural Convection in a Toroidal Loop: Effect of Tilt Angle
,”
ASME J. Heat Transfer
,
108
, pp.
796
805
.
19.
Stern
,
C. H.
,
Greif
,
R.
, and
Humphrey
,
J.
,
1988
, “
An Experimental-Study of Natural-Convection in a Toroidal Loop
,”
ASME J. Heat Transfer
,
107
, pp.
877
884
.
20.
Cross
,
M. C.
, and
Hohenberg
,
P. C.
,
1993
, “
Pattern Formation out of Equilibrium
,”
Rev. Mod. Phys.
,
65
(
3
), pp.
851
1112
.
21.
Haken, H., 1983, Synergetics, An Introduction. Nonequilibrium Phase Transitions and Self-Organization in Physics, Chemistry and Biology, Springer-Verlag, Berlin, Chap. 5.
22.
Landau, L. D., and Lifshitz, E. M., 1958, Statistical Physics, Addison Wesley, Reading, MA, Chap. XIV.
23.
Newell
,
A. L.
,
Passot
,
T.
, and
Lega
,
J.
,
1993
, “
Order Parameter Equations for Patterns
,”
Annu. Rev. Fluid Mech.
,
25
, pp.
399
453
.
24.
Nicolis, G., and Prigogine, I., 1977, Self-Organization in Nonequilibrium Systems: from Dissipative Structures to Order through Fluctuations, Wiley, New York.
25.
Newell
,
A. L.
, and
Whitehead
,
J. A.
,
1969
, “
Finite Bandwidth, Finite Amplitude Convection
,”
J. Fluid Mech.
,
38
, pp.
279
303
.
26.
Segel
,
L. A.
,
1969
, “
Distant Side-Walls Cause Slow Amplitude Modulation of Cellular Convection
,”
J. Fluid Mech.
,
38
, pp.
203
224
.
27.
Pomeau
,
Y.
, and
Manneville
,
P.
,
1979
, “
Stability and Fluctuations of a Spatially Periodic Convective Flow
,”
J. Phys. Lett.
,
40
, pp.
609
612
.
28.
Newell
,
A. L.
,
Passot
,
T.
, and
Souli
,
M.
,
1990
, “
The Phase Diffusion and Mean Drift Equations for Convection at Finite Rayleigh Numbers in Large Containers
,”
J. Fluid Mech.
,
220
, pp.
187
252
.
29.
Cross
,
M. C.
,
1980
, “
Derivation of the Amplitude Equation at the Rayleigh-Benard Instability
,”
Phys. Fluids
,
23
(
9
), pp.
1727
1731
.
30.
Swift
,
J.
, and
Hohenberg
,
P. C.
,
1977
, “
Hydrodynamic Fluctuations at the Convective Instability
,”
Phys. Rev. A
,
15
(
1
), pp.
319
328
.
31.
Thompson, J. M. T., and Stewart, H. B., 1993, Nonlinear Dynamics and Chaos, John Wiley and Sons Ltd., New York, pp. 212–227.
You do not currently have access to this content.