A numerical study is performed to investigate thermal transport phenomena in circular Couette flow in a concentric annulus, in which an axially rotating inner cylinder and stationary outer cylinder are strongly heated under the same heat flux condition. The anisotropic t2¯-εt heat-transfer model together with the anisotropic k-ε turbulence model is employed to determine thermal eddy diffusivity. When the inner cylinder is at rest, the turbulent kinetic energy and temperature variance substantially diminish over the whole annular cross-section along the flow, resulting in laminarization, i.e., a deterioration in heat-transfer performance at the inner and outer cylinder walls. In contrast, a substantial reduction in the turbulent kinetic energy and temperature variance in the laminarizing flow is suppressed in the presence of inner core rotation. In other words, inner core rotation contributes to the suppression of laminarization in a strongly heated gas flow. These characteristics in thermal fluid flow with temperature-dependent thermal property are summarized in the form of dimensionless heat flux parameter versus inlet Reynolds number with the Taylor number, as the parameter.

1.
Kuzay, T. M., and Scott, C. J., 1975, “Turbulent Heat Transfer Studies in Annulus with Inner Cylinder Rotation,” Proceedings of the ASME Winter Annual Meeting, 75-WA/HT-55, pp. 1–11.
2.
Kuzay, T. M., and Scott, C. J., 1976, “Turbulent Prandtl Numbers for Fully Developed Rotating Annular Axial Flow of Air,” Proceedings of the ASME-AIChE Heat Transfer Conference, 76-HT-36, pp. 1–13.
3.
Hirai
,
S.
,
Takagi
,
T.
, and
Matumoto
,
M.
,
1997
, “
Prediction of the Laminarization Phenomena in Turbulent Swirling Flows
,”
Trans. Jpn. Soc. Mech. Eng.
,
52
, pp.
1608
1616
.
4.
Torii
,
S.
, and
Yang
,
W.-J.
,
1994
, “
Numerical Study on Turbulent Couette Flow and Heat Transfer in Concentric Annuli
,”
Numer. Heat Transfer, Part A
,
26
, pp.
321
336
.
5.
Dalle Donne
,
M.
, and
Meerwald
,
E.
,
1966
, “
Experimental Local Heat-Transfer and Average Friction Coefficients for Subsonic Turbulent Flow of Air in an Annulus at High Temperatures
,”
Int. J. Heat Mass Transf.
,
9
, pp.
1361
1376
.
6.
Dalle Donne
,
M.
, and
Meerwald
,
E.
,
1973
, “
Heat Transfer and Friction Coefficients for Turbulent Flow of Air in Smooth Annuli at High Temperatures
,”
Int. J. Heat Mass Transf.
,
16
, pp.
787
809
.
7.
Nemira
,
M. A.
,
Vilemas
,
J. V.
, and
Simonis
,
V. M.
,
1980
, “
Heat Transfer to Turbulent Flow of Gases with Various Physical Properties in Annuli (Correlation of Experimental Reuslts)
,”
Heat Transfer-Sov. Res.
,
12
, pp.
104
112
.
8.
Torii
,
S.
,
Shimizu
,
A.
,
Hasegawa
,
S.
, and
Kusama
,
N.
,
1991
, “
Laminarization of Strongly Heated Annular Gas Flows
,”
JSME Int. J., Ser. B
,
34
(
2
), pp.
157
168
.
9.
Fujii
,
S.
,
Akino
,
N.
,
Hishida
,
M.
,
Kawamura
,
H.
, and
Sanokawa
,
K.
,
1991
, “
Numerical Studies on Laminarization of Heated Turbulent Gas Flow in Annular Duct
,”
J. Atomic Energy Soc. Jpn., (in Japanese)
,
33
(
12
), pp.
1180
1190
.
10.
McEligot, D. M., Shehata A. M., and Kunugi, T., 1998, “Prediction of Strongly-Heated Internal Gas Flows,” Proc. 2nd International Conference in Turbulent Heat Transfer, I, pp. 1–15.
11.
S.
Torii
, and
W.-J.
Yang
,
1996
, “
A New Near-Wall Two-Equation Model for Turbulent Heat Transport
,”
Numer. Heat Transfer, Part A
,
29
, pp.
417
440
.
12.
Schlichting, H., 1985, Boundary Layer Theory, 2nd ed., McGraw-Hill, New York.
13.
Torii
,
S.
, and
Yang
,
W.-J.
,
1997
, “
Laminarization of Turbulent Gas Flows inside a Strongly Heated Tube
,”
Int. J. Heat Mass Transf.
,
40
(
13
), pp.
3105
3118
.
14.
Ezato
,
K.
,
Shehata
,
A. M.
,
Kunugi
,
T.
, and
McEligot
,
D. M.
,
1999
, “
Numerical Prediction of Transitional Features of Turbulent Forced Gas Flows in Circular Tubes with Strongly Heating
,”
J. Heat Transfer
,
121
, pp.
546
555
.
15.
Myong
,
H. K.
, and
Kasagi
,
N.
,
1990
, “
A New Approach to the Improvement of k-ε Turbulence Model for Wall-Bounded Shear Flows
,”
JSME Int. J., Ser. B
,
33
(
1
), pp.
63
72
.
16.
Rodi
,
W.
,
1982
, “
Examples of Turbulence Models for Incompressible Flows
,”
AIAA J.
,
20
, pp.
872
879
.
17.
Torii
,
S.
, and
Yang
,
W.-J.
,
2000
, “
Thermal-Fluid Transport Phenomena in Strongly Heated Channel Flows
,”
Int. J. Numer. Methods Heat Fluid Flow
,
10
, pp.
802
823
.
18.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere Pub., New York.
19.
Propath Group, 1987, “Propath: a Program Package for Thermophysical Property,” Version 4.1, Propath Group, http://www.rccm.co.jp./seihin/propath/
20.
Brighton
,
J. A.
, and
Jones
,
J. B.
, 1964, “Fully Developed Turbulent Flow in Annuli,” Trans. ASME, D, pp. 835–844.
21.
Lundberg
,
R. E.
,
McCuen
,
P. A.
, and
Reynolds
,
W. C.
,
1963
, “
Heat Transfer in Annular Passages: Hydrodynamically Developed Laminar Flow with Arbitrarily Prescribed Wall Temperatures or Heat Fluxes
,”
Int. J. Heat Mass Transf.
,
6
, pp.
495
529
.
22.
Kays
,
W. M.
, and
Leung
,
E. Y.
,
1963
, “
Heat Transfer in Annular Passages: Hydrodynamically Developed Turbulent Flow with Arbitrarily Prescribed Heat Flux
,”
Int. J. Heat Mass Transf.
,
6
, pp.
537
557
.
23.
Ogawa
,
M.
,
Kawamura
,
H.
,
Takizuka
,
T.
, and
Akino
,
H.
,
1982
, “
Experiment on Laminarization of Strongly Heated Gas Flow in Vertical Circular Tube
,”
J. Atomic Energy Soc. Jpn., (in Japanese)
24
, pp.
60
67
.
24.
Torii
,
S.
,
Shimizu
,
A.
,
Hasegawa
,
S.
, and
Higasa
,
M.
,
1990
, “
Laminarization of Strongly Heated Gas Flows in a Circular Tube (Numerical Analysis by Means of a Modified k−ε Model)
,”
JSME Int. J., Ser. B
,
33
(
3
), pp.
538
547
.
You do not currently have access to this content.