Numerical investigations of the heat transfer from hot wires in near-wall measurements were carried out. Special attention was paid to the effect of the wall thickness, the flow conditions below the wall and the shear velocity connected to different wall materials. Compared with previous studies, an improved physical model taking into account the flow region below the wall in the computational domain was applied. The results obtained agree well with experimental data in the literature for walls consisting of both highly and poorly conducting materials. The investigation showed that the shear velocity Uτ has a significant influence on hot-wire measurements in the vicinity of a wall. Nevertheless, discernible effects of the wall thickness and the flow condition below the wall were found only in the case of a poorly conducting wall. In addition, the results also suggest a weak effect of the overheat ratio for a wire with an infinitely large aspect ratio.

1.
Carslaw, H. S., and Jaeger, J. C., 1959, Conduction of Heat in Solids, 2nd edition, Clarendon Press, Oxford.
2.
Janke, G., 1987, “Hot Wire in Wall Proximity,” in Advances in Turbulence, G. Comte-Bellot and J. Mathieu, eds., Springer, Berlin, pages 488–498.
3.
Bradshaw, P., 1971, An Introduction to Turbulence and Its Measurement, Pergamon Press, Oxford.
4.
Lange, C. F., 1997, “Numerical Predictions of Heat and Momentum Transfer from a Cylinder in Crossflow With Implications to Hot-Wire Anemometry,” Ph.D. thesis, Inst. Fluid Mech., Friedrich-Alexander University of Erlangen-Nuremberg.
5.
Cole, J., and Roshko, A., 1954, “Heat Transfer From Wires at Reynolds Numbers in the Oseen Range,” Proc. Heat Transfer and Fluid Mech. Inst., University of California, Berkeley, CA, 6, pp. 357–384.
6.
Shi
,
J.-M.
,
Breuer
,
M.
, and
Durst
,
F.
,
2002
, “
Wall Effect on Heat Transfer From a Micro Cylinder in Near-Wall Shear Flow
,”
Int. J. Heat Mass Transf.
,
45
, pp.
1309
1320
.
7.
Durst
,
F.
, and
Zanoun
,
E. S.
,
2002
, “
Experimental Investigation of Near-Wall Effects on Hot-Wire Measurements
,”
Exp. Fluids
,
33
, pp.
210
218
.
8.
Ligrani
,
P. M.
, and
Bradshaw
,
P.
,
1987
, “
Subminiature Hot-Wire Sensors: Development and Use
,”
J. Phys. E
,
20
, pp.
323
332
.
9.
Chew
,
Y. T.
,
Khoo
,
B. C.
, and
Li
,
B. C.
,
1998
, “
An Investigation of Wall Effects on Hot-Wire Measurements Using a Bent Sublayer Probe
,”
Meas. Sci. Technol.
,
9
, pp.
67
85
.
10.
Gibbings
,
J. C.
,
Madadnia
,
J.
, and
Yousif
,
A. H.
,
1995
, “
The Wall Correction of the Hot-Wire Anemometer
,”
Flow Meas. Instrum.
,
6
, pp.
127
136
.
11.
Durst
,
F.
,
Shi
,
J.-M.
, and
Breuer
,
M.
,
2002
, “
Numerical Prediction of Hot-Wire Corrections Near Walls
,”
ASME J. Fluids Eng.
,
124
, pp.
241
250
.
12.
Durst
,
F.
,
Zanoun
,
E.-S.
, and
Pashtrapanska
,
M.
,
2001
, “
In Situ Calibration of Hot Wires Close to Highly Heat-Conducting Walls
,”
Exp. Fluids
,
31
, pp.
103
110
.
13.
Zemskaya
,
A. S.
,
Levitskiy
,
V. N.
,
Repik
,
Y. U.
, and
Sosedko
,
Y. P.
,
1979
, “
Effect of the Proximity of the Wall on Hot-Wire Readings in Laminar and Turbulent Boundary Layers
,”
Fluid Mech.-Sov. Res.
,
8
, pp.
133
141
.
14.
Krishnamoorthy
,
L. V.
,
Wood
,
D. H.
,
Antonia
,
R. A.
, and
Chambers
,
H. J.
,
1985
, “
Effect of Wire Diameter and Overheat Ratio Near a Conducting Wall
,”
Exp. Fluids
,
3
, pp.
121
127
.
15.
Chew
,
Y. T.
,
Shi
,
S. X.
, and
Khoo
,
B. C.
,
1995
, “
On the Numerical Near-Wall Corrections of Single Hot-Wire Measurements
,”
Int. J. Heat Fluid Flow
,
16
, pp.
471
476
.
16.
Kostic´
,
Z.
, and
Oka
,
S.
,
1972
, “
Influence of Wall Proximity on Hot-Wire Velocity Measurements
,”
DISA Information
,
13
, pp.
29
33
.
17.
Bhatia
,
J. C.
,
Durst
,
F.
, and
Jovanovic´
,
J.
,
1982
, “
Corrections of Hot-Wire Anemometer Measurements Near Walls
,”
J. Fluid Mech.
,
122
, pp.
411
431
.
18.
Wills
,
J. A. B.
,
1962
, “
The Correction of Hot-Wire Readings for Proximity to a Solid Boundary
,”
J. Fluid Mech.
,
12
, pp.
388
396
.
19.
Lange
,
C. F.
,
Durst
,
F.
, and
Breuer
,
M.
,
1999
, “
Wall Effects on Heat Losses From Hot-Wires
,”
Int. J. Heat Fluid Flow
,
20
, pp.
34
47
.
20.
Verein Deutscher Ingenieure, 1994, VDI-Wa¨rmeatlas, 7th edition, VDI, Du¨sseldorf.
21.
Durst
,
F.
, and
Scha¨fer
,
M.
,
1996
, “
A Parallel Blockstructured Multigrid Method for the Prediction of Incompressible Flows
,”
Int. J. Numer. Methods Fluids
,
22
, pp.
549
565
.
22.
Lange
,
C. F.
,
Scha¨fer
,
M.
, and
Durst
,
F.
,
2002
, “
Local Block Refinement With a Multigrid Flow Solver
,”
Int. J. Numer. Methods Fluids
,
38
, pp.
21
41
.
23.
Ferziger, J. H., and Peric´, M., 1999, Computational Methods for Fluid Dynamics, Springer, Berlin.
24.
Shi, J.-M., 2002, “Numerical Study of Classical Low Reynolds Number Flow Problems,” Ph.D. thesis, Inst. Fluid Mech., Friedrich-Alexander University of Erlangen-Nuremberg, Shaker Verlag, Aachen.
25.
Collis
,
D. C.
, and
Williams
,
M. J.
,
1959
, “
Two-Dimensional Convection From Heated Wires at Low Reynolds Numbers
,”
J. Fluid Mech.
,
6
, pp.
357
384
.
26.
Illingworth, C. R., 1963, “Flow at small Reynolds number,” In Laminar Boundary Layers, L. Rosenhead, ed., Oxford, Clarendon Press, p. 197.
27.
Wood
,
W. W.
,
1968
, “
Calculation for Anemometry With Fine Hot Wires
,”
J. Fluid Mech.
,
32
, pp.
9
19
.
28.
Hieber
,
C. A.
, and
Gebhart
,
B.
,
1968
, “
Low Reynolds Number Heat Transfer From a Circular Cylinder
,”
J. Fluid Mech.
,
32
, pp.
21
28
.
29.
Nakai
,
S.
, and
Okazaki
,
T.
,
1975
, “
Heat Transfer From a Horizontal Circular Wire at Small Reynolds and Grashof Numbers—II: Mixed Convection
,”
Int. J. Heat Mass Transf.
,
18
, pp.
397
413
.
30.
Dennis
,
S. C. R.
,
Hudson
,
J. D.
, and
Smith
,
N.
,
1968
, “
Steady Laminar Forced Convection From a Circular Cylinder at Low Reynolds Numbers
,”
Phys. Fluids
,
11
, pp.
933
940
.
31.
Rohsenow, W. M., 1973, Handbook of Heat Transfer, McGraw-Hill, New York.
32.
Wacker, D., 1985, “Die numerische Lo¨sung der Navier-Stokesschen Gleichungen fu¨r einen beheizten Zylinder in Wandna¨he mit Beru¨cksichtigung des Wa¨rmeu¨bergangs,” Ph.D. thesis, Technische Universita¨t Berlin.
You do not currently have access to this content.