This study presents a new mechanistic model of the Leidenfrost point (LFP); the minimum liquid/solid interface temperature required to support film boiling on a smooth surface. The model is structured around bubble nucleation, growth, and merging criteria, as well as surface cavity size characterization. It is postulated that for liquid/solid interface temperatures at and above the LFP, a sufficient number of cavities (about 20 percent) are activated and the bubble growth rates are sufficiently fast that a continuous vapor layer is established nearly instantaneously between the liquid and the solid. The model is applicable to both pools of liquid and sessile droplets. The effect of surface cavity distribution on the LFP predicted by the model is verified for boiling on aluminum, nickel and silver surfaces, as well as on a liquid gallium surface. The model exhibits good agreement with experimental sessile droplet data for water, FC-72, and acetone. While the model was developed for smooth surfaces on which the roughness asperities are of the same magnitude as the cavity radii (0.1–1.0 μm), it is capable of predicting the boundary or limiting Leidenfrost temperature for rougher surfaces with good accuracy.

1.
Bernardin
,
J. D.
, and
Mudawar
,
I.
,
1995
, “
Validation of the Quench Factor Technique in Predicting Hardness in Heat Treatable Aluminum Alloys
,”
Int. J. Heat Mass Transf.
,
38
, pp.
863
873
.
2.
Bernardin
,
J. D.
, and
Mudawar
,
I.
,
1999
, “
The Leidenfrost Point: Experimental Study and Assessment of Existing Models
,”
ASME J. Heat Transfer
,
121
, pp.
894
903
.
3.
Clark
,
H. B.
,
Strenge
,
P. S.
, and
Westwater
,
J. W.
,
1959
, “
Active Sites for Nucleate Boiling
,”
Chem. Eng. Prog., Symp. Ser.
,
55
, pp.
103
110
.
4.
Gaertner
,
R. F.
, and
Westwater
,
J. W.
,
1959
, “
Population of Active Sites in Nucleate Boiling Heat Transfer
,”
Chem. Eng. Prog., Symp. Ser.
,
55
, pp.
39
48
.
5.
Kurihara
,
H. M.
, and
Myers
,
J. E.
,
1960
, “
The Effects of Superheat and Surface Roughness on Boiling Coefficients
,”
AIChE J.
,
6
, pp.
83
91
.
6.
Bankoff
,
G. S.
,
1959
, “
The Prediction of Surface Temperatures at Incipient Boiling
,”
Chem. Eng. Prog., Symp. Ser.
,
55
, pp.
87
94
.
7.
Hsu
,
Y. Y.
,
1962
, “
On the Size Range of Active Nucleation Cavities on a Heating Surface
,”
ASME J. Heat Transfer
,
84
, pp.
207
213
.
8.
Han
,
C. Y.
, and
Griffith
,
P.
,
1965
, “
The Mechanism of Heat Transfer in Nucleate Pool Boiling-Part I
,”
Int. J. Heat Mass Transf.
,
8
, pp.
887
904
.
9.
Lorenz, J. J., Mikic, B. B., and Rohsenow, W. M., 1974, “The Effects of Surface Condition on Boiling,” Proc. Fifth Int. Heat Transfer Conf., 4, Tokyo, pp. 35–39.
10.
Gaertner
,
R. F.
,
1965
, “
Photographic Study of Nucleate Pool Boiling on a Horizontal Surface
,”
ASME J. Heat Transfer
,
87
, pp.
17
29
.
11.
Cornwell, K., and Brown, R. D., 1978, “Boiling Surface Topography,” Proc. Sixth Int. Heat Transfer Conf., 1, Toronto, Canada, pp. 157–161.
12.
Ward, H. C., 1982, “Profile Description,” in Rough Surfaces T. R. Thomas, ed., Longman Group, New York, pp. 72–90.
13.
Thomas, T. R., 1982, “Stylus Instruments,” in Rough Surfaces T. R. Thomas, ed., Longman Group, New York, pp. 12–70.
14.
Brown, W. T., Jr., 1967, “Study of Flow Surface Boiling,” Ph.D. thesis, M.I.T., Cambridge, MA.
15.
Mikic
,
B. B.
, and
Rohsenow
,
W. M.
,
1969
, “
A New Correlation of Pool-Boiling Data Including the Effect of Heating Surface Characteristics
,”
ASME J. Heat Transfer
,
91
, pp.
245
250
.
16.
Bier, K., Gorenflo, D., Salem, M., and Tanes, Y., 1978, “Pool Boiling Heat Transfer and Size of Active Nucleation Centers for Horizontal Plates With Different Surface Roughness,” Proc. Sixth Int. Heat Trans. Conf., 1, Toronto, Canada, pp. 151–156.
17.
Yang
,
S. R.
, and
Kim
,
R. H.
,
1988
, “
A Mathematical Model of the Pool Boiling Nucleation Site Density in Terms of the Surface Characteristics
,”
Int. J. Heat Mass Transf.
,
31
, pp.
1127
1135
.
18.
Wang
,
C. H.
, and
Dhir
,
V. K.
,
1993
, “
Effect of Surface Wettability on Active Nucleation Site Density During Pool Boiling of Water on a Vertical Surface
,”
ASME J. Heat Transfer
,
115
, pp.
659
669
.
19.
Gaertner
,
R. F.
,
1963
, “
Distribution of Active Sites in the Nucleate Boiling of Liquids
,”
Chem. Eng. Prog., Symp. Ser.
,
59
, pp.
52
61
.
20.
Eckert, E. R. G., and Drake, R. M., 1972, Analysis of Heat and Mass Transfer, McGraw-Hill, New York.
21.
Panton, R. L., 1984, Incompressible Flow, John Wiley & Sons, New York.
22.
Mikic
,
B. B.
,
Rohsenow
,
W. M.
, and
Griffith
,
P.
,
1970
, “
On Bubble Growth Rates
,”
Int. J. Heat Mass Transf.
,
13
, pp.
657
666
.
23.
Van Stralen
,
S. J. D.
,
Sohal
,
M. S.
,
Cole
,
R.
, and
Sluyter
,
W. M.
,
1975
, “
Bubble Growth Rates in Pure and Binary Systems: Combined Effect of Relaxation and Evaporation Microlayers
,”
Int. J. Heat Mass Transf.
,
18
, pp.
453
467
.
24.
Lee
,
H. S.
, and
Merte
,
H.
,
1996
, “
Spherical Vapor Bubble Growth in Uniformly Superheated Liquids
,”
Int. J. Heat Mass Transf.
,
39
, pp.
2427
2447
.
25.
Bankoff
,
S. G.
,
1958
, “
Entrapment of Gas in the Spreading of a Liquid over a Rough Surface
,”
AIChE J.
,
4
, pp.
24
26
.
26.
Bankoff
,
S. G.
, and
Mikesell
,
R. D.
,
1959
, “
Bubble Growth Rates in Highly Subcooled Nucleate Boiling
,”
Chem. Eng. Prog., Symp. Ser.
,
55
, pp.
95
102
.
27.
Carey, V. P., 1992, Liquid-Vapor Phase-Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment, Hemisphere, New York.
28.
Bernardin
,
J. D.
,
Mudawar
,
I.
,
Walsh
,
C. B.
, and
Franses
,
E. I.
,
1997
, “
Contact Angle Temperature Dependence for Water Droplets on Practical Aluminum Surfaces
,”
Int. J. Heat Mass Transf.
,
40
, pp.
1017
1034
.
29.
Skripov, V. P., 1974, Metastable Liquids, John Wiley & Sons, New York.
30.
Spiegler
,
P.
,
Hopenfeld
,
J.
,
Silberberg
,
M.
,
Bumpus
, Jr.,
C. F.
, and
Norman
,
A.
,
1963
, “
Onset of Stable Film Boiling and the Foam Limit
,”
Int. J. Heat Mass Transf.
,
6
, pp.
987
994
.
You do not currently have access to this content.