Abstract

Two-dimensional Navier-Stokes simulations of heat and momentum transport in an intermittently grooved passage are performed using the spectral element technique for the Reynolds number range 600Re1800. The computational domain has seven contiguous transverse grooves cut symmetrically into opposite walls, followed by a flat section with the same length. Periodic inflow/outflow boundary conditions are employed. The development and decay of unsteady flow is observed in the grooved and flat sections, respectively. The axial variation of the unsteady component of velocity is compared to the local heat transfer, shear stress and pressure gradient. The results suggest that intermittently grooved passages may offer even higher heat transfer for a given pumping power than the levels observed in fully grooved passages.

1.
Webb, R. L., 1994, Principles of Enhanced Heat Transfer, John Wiley & Sons, New York.
2.
Ghaddar
,
N. K.
,
Korczak
,
K.
,
Mikic
,
B. B.
, and
Patera
,
A. T.
,
1986
, “
Numerical Investigation of Incompressible Flow in Grooved Channels. Part 1: Stability and Self-Sustained Oscillations
,”
J. Fluid Mech.
,
168
, pp.
541
567
.
3.
Greiner
,
M.
,
1991
, “
An Experimental Investigation of Resonant Heat Transfer Enhancement in Grooved Channels
,”
Int. J. Heat Mass Transf.
,
24
, pp.
1383
1391
.
4.
Roberts
,
E. P. L.
,
1994
, “
A Numerical and Experimental Study of Transition Processes in an Obstructed Channel Flow
,”
J. Fluid Mech.
,
260
, pp.
185
209
.
5.
Lee
,
B. S.
,
Kang
,
I. S.
, and
Lim
,
H. C.
,
1999
, “
Chaotic Mixing and Mass Transfer Enhancement by Pulsatile Laminar Flow in an Axisymmetric Wavy Channel
,”
Int. J. Heat Mass Transf.
,
42
, pp.
2571
2581
.
6.
Kozlu
,
H.
,
Mikic
,
B. B.
, and
Patera
,
A. T.
,
1988
, “
Minimum-Dissipation Heat Removal by Scale-Matched Flow Destabilization
,”
Int. J. Heat Mass Transf.
,
31
, pp.
2023
2032
.
7.
Karniadakis
,
G. E.
,
Mikic
,
B. B.
, and
Patera
,
A. T.
,
1988
, “
Minimum-Dissipation Transport Enhancement by Flow Destabilization: Reynolds Analogy Revisited
,”
J. Fluid Mech.
,
192
, pp.
365
391
.
8.
Amon
,
C. H.
,
Majumdar
,
D.
,
Herman
,
C. V.
,
Mayinger
,
F.
,
Mikic
,
B. B.
, and
Sekulic
,
D. P.
,
1992
, “
Experimental and Numerical Investigation of Oscillatory Flow and Thermal Phenomena in Communicating Channels
,”
Int. J. Heat Mass Transf.
,
35
, pp.
3115
3129
.
9.
Greiner
,
M.
,
Chen
,
R.-F.
, and
Wirtz
,
R. A.
,
1990
, “
Heat Transfer Augmentation Through Wall-Shaped-Induced Flow Destabilization
,”
J. Heat Transfer
,
112
, pp.
336
341
.
10.
Schatz
,
M. F.
,
Tagg
,
R. P.
,
Swinney
,
H. L.
,
Fischer
,
P. F.
, and
Patera
,
A. T.
,
1991
, “
Supercritical Transition in Plane Channel Flow with Spatially Periodic Perturbations
,”
Phys. Rev. Lett.
,
66
, No.
12
, pp.
1579
1582
.
11.
Greiner
,
M.
,
Chen
,
R.-F.
, and
Wirtz
,
R. A.
,
1991
, “
Enhanced Heat Transfer/Pressure Drop Measured From a Flat Surface in a Grooved Channel
,”
J. Heat Transfer
,
113
, pp.
498
500
.
12.
Wirtz
,
R. A.
,
Huang
,
F.
, and
Greiner
,
M.
,
1999
, “
Correlation of Fully Developed Heat Transfer and Pressure Drop in a Symmetrically Grooved Channel
,”
J. Heat Transfer
,
121
, pp.
236
239
.
13.
Greiner
,
M.
,
Spencer
,
G.
, and
Fischer
,
P. F.
,
1998
, “
Direct Numerical Simulation of Three-Dimensional Flow and Augmented Heat Transfer in a Grooved Channel
,”
J. Heat Transfer
,
120
, pp.
717
723
.
14.
Greiner
,
M.
,
Faulkner
,
R. J.
,
Van
,
V. T.
,
Tufo
,
H. M.
, and
Fischer
,
P. F.
,
2000
, “
Simulations of Three-Dimensional Flow and Augmented Heat Transfer in a Symmetrically Grooved Channel with Constant Temperature Walls
,”
J. Heat Transfer
,
122
, pp.
653
660
.
15.
Greiner
,
M.
,
Chen
,
R.-F.
, and
Wirtz
,
R. A.
,
1995
, “
Augmented Heat Transfer in a Recovery Passage Downstream From a Grooved Section: An Example of Uncoupled Heat/Momentum Transport
,”
J. Heat Transfer
,
117
, pp.
303
308
.
16.
Huang, F., 1998, “Experimental Investigation of Fully-Developed Augmented Convection in a Symmetrically Grooved Channel,” Masters of Science Degree thesis, University of Nevada, Reno, NV, May 1998.
17.
Greiner
,
M.
,
Fischer
,
P. F.
,
Tufo
,
H. M.
, and
Wirtz
,
R. A.
,
2002
, “
Three Dimensional Simulations of Enhanced Heat Transfer in a Flat Passage Downstream From a Grooved Channel
,”
J. Heat Transfer
,
124
(
1
), pp.
169
176
.
18.
Patera
,
A. T.
,
1984
, “
A Spectral Element Method for Fluid Dynamics; Laminar Flow in a Channel Expansion
,”
J. Comp. Phys.
,
54
, pp.
468
488
.
19.
Maday, Y., and Patera, A. T., 1989, “Spectral Element Methods for the Navier-Stokes Equations,” State of the Art Surveys on Computational Mechanics, A. K. Noor and J. T. Oden, eds., ASME, New York, pp. 71–143.
20.
Fischer
,
P. F.
,
1997
, “
An Overlapping Schwarz Method for Spectral Element Solution of the Incompressible Navier-Stokes Equations
,”
J. Comp. Phys.
,
133
, pp.
84
101
.
21.
Ghaddar
,
N. K.
,
Karniadakis
,
G. E.
, and
Patera
,
A. T.
,
1986
, “
A Conservative Isparametric Spectral Element Method for Forced Convection: Application to Fully Developed Flow in Periodic Geometries
,”
Numer. Heat Transfer
,
9
, pp.
277
300
.
22.
Fischer, P. F., and Patera, A. T., 1992, “Parallel Spectral Element Solutions of Eddy-Promoter Channel Flow,” Proc. of the European Research Community on Flow Turbulence and Computation Workshop, Lausanne, Switzerland, Cambridge University Press, pp. 246–256.
23.
Patankar
,
S. V.
,
Liu
,
C. H.
, and
Sparrow
,
E. M.
,
1977
, “
Fully Developed Flow and Heat Transfer in Ducts Having Streamwise Periodic Variations of Cross-Sectional Area
,”
J. Heat Transfer
,
99
, pp.
180
186
.
24.
Kays, W. M., and Crawford, M. E., 1993, Convection Heat and Mass Transfer, 3rd edition, McGraw-Hill, New York.
You do not currently have access to this content.