Spectral element simulations of three-dimensional flow and augmented convection in a flat passage downstream from a fully developed channel with symmetric, transverse grooves on opposite walls were performed for 405⩽Re⩽764. Unsteady flow that develops in the grooved region persists several groove-lengths into the flat passage, increasing both local heat transfer and pressure gradient relative to that in a steady flat passage. Moreover, the heat transfer for a given pumping power in the first three groove-lengths of the flat passage was greater than the levels observed in a fully developed grooved passage.
Issue Section:
Heat Transfer Enhancement
1.
Webb, R. L., 1994, Principles of Enhanced Heat Transfer, John Wiley & Sons, New York.
2.
Ghaddar
, N. K.
, Korczak
, K.
, Mikic
, B. B.
, and Patera
, A. T.
, 1986
, “Numerical Investigation of Incompressible Flow in Grooved Channels: Part 1—Stability and Self-Sustained Oscillations
,” J. Fluid Mech.
, 168
, pp. 541
–567
.3.
Greiner
, M.
, 1991
, “An Experimental Investigation of Resonant Heat Transfer Enhancement in Grooved Channels
,” Int. J. Heat Mass Transf.
, 24
, pp. 1383
–1391
.4.
Roberts
, E. P. L.
, 1994
, “A Numerical and Experimental Study of Transition Processes in an Obstructed Channel Flow
,” J. Fluid Mech.
, 260
, pp. 185
–209
.5.
Kozlu
, H.
, Mikic
, B. B.
, and Patera
, A. T.
, 1988
, “Minimum-Dissipation Heat Removal by Scale-Matched Flow Destabilization
,” Int. J. Heat Mass Transf.
, 31
, pp. 2023
–2032
.6.
Karniadakis
, G. E.
, Mikic
, B. B.
, and Patera
, A. T.
, 1988
, “Minimum-Dissipation Transport Enhancement by Flow Destabilization: Reynolds Analogy Revisited
,” J. Fluid Mech.
, 192
, pp. 365
–391
.7.
Amon
, C. H.
, Majumdar
, D.
, Herman
, C. V.
, Mayinger
, F.
, Mikic
, B. B.
, and Sekulic
, D. P.
, 1992
, “Experimental and Numerical Investigation of Oscillatory Flow and Thermal Phenomena in Communicating Channels
,” Int. J. Heat Mass Transf.
, 35
, pp. 3115
–3129
.8.
Greiner
, M.
, Chen
, R.-F.
, and Wirtz
, R. A.
, 1989
, “Heat Transfer Augmentation Through Wall-Shaped-Induced Flow Destabilization
,” ASME J. Heat Transfer
, 112
, pp. 336
–341
.9.
Greiner
, M.
, Chen
, R.-F.
, and Wirtz
, R. A.
, 1991
, “Enhanced Heat Transfer/Pressure Drop Measured From a Flat Surface in a Grooved Channel
,” ASME J. Heat Transfer
, 113
, pp. 498
–500
.10.
Wirtz
, R. A.
, Huang
, F.
, and Greiner
, M.
, 1999
, “Correlation of Fully Developed Heat Transfer and Pressure Drop in a Symmetrically Grooved Channel
,” ASME J. Heat Transfer
, 121
, pp. 236
–239
.11.
Greiner
, M.
, Spencer
, G.
, and Fischer
, P. F.
, 1998
, “Direct Numerical Simulation of Three-Dimensional Flow and Augmented Heat Transfer in a Grooved Channel
,” ASME J. Heat Transfer
, 120
, pp. 717
–723
.12.
Greiner
, M.
, Faulkner
, R. J.
, Van
, V. T.
, Tufo
, H. M.
, and Fischer
, P. F.
, 2000
, “Simulations of Three-Dimensional Flow and Augmented Heat Transfer in a Symmetrically Grooved Channel
,” ASME J. Heat Transfer
, 122
, pp. 653
–660
.13.
Blair
, M. F.
, 1983
, “Influence of Free-Stream Turbulence on Turbulent Boundary Layer Heat Transfer and Mean Profile Development: Part I—Experimental Data; Part II—Analysis of Results
,” ASME J. Heat Transfer
, 105
, pp. 33
–47
.14.
Maciejewski
, P. K.
, and Moffat
, R. J.
, 1992
, “Heat Transfer with Very High Free-Stream Turbulence: Part I—Experimental Data; Part II—Analysis of Results
,” ASME J. Heat Transfer
, 114
, pp. 827
–839
.15.
Greiner
, M.
, Chen
, R.-F.
, and Wirtz
, R. A.
, 1995
, “Augmented Heat Transfer in a Recovery Passage Downstream From a Grooved Section: An Example of Uncoupled Heat/Momentum Transport
,” ASME J. Heat Transfer
, 117
, pp. 303
–308
.16.
Huang, F., 1998, “Experimental Investigation of Fully-Developed Augmented Convection in a Symmetrically Grooved Channel,” Masters of Science Degree thesis, University of Nevada, Reno.
17.
Patera
, A. T.
, 1984
, “A Spectral Element Method for Fluid Dynamics; Laminar Flow in a Channel Expansion
,” J. Comput. Phys.
, 54
, pp. 468
–488
.18.
Maday, Y., and Patera, A. T., 1989, “Spectral Element Methods for the Navier-Stokes Equations,” State of the Art Surveys on Computational Mechanics, A. K. Noor and J. T. Oden, eds., ASME, New York, pp. 71–143.
19.
Fischer
, P. F.
, 1997
, “An Overlapping Schwarz Method for Spectral Element Solution of the Incompressible Navier-Stokes Equations
,” J. Comput. Phys.
, 133
, pp. 84
–101
.20.
Fischer, P. F., and Patera, A. T., 1992, “Parallel Spectral Element Solutions of Eddy-Promoter Channel Flow,” Proceedings of the European Research Community on Flow Turbulence and Computation Workshop, Lausanne, Switzerland, Cambridge University Press, pp. 246–256.
21.
Patankar
, S. V.
, Liu
, C. H.
, and Sparrow
, E. M.
, 1977
, “Fully Developed Flow and Heat Transfer in Ducts Having Streamwise Periodic Variations of Cross-Sectional Area
,” ASME J. Heat Transfer
, 99
, pp. 180
–186
.22.
Kays, W. M., and Crawford, M. E., 1993, Convection Heat and Mass Transfer, Third Edition, McGraw-Hill, New York.
23.
Fox, R. W., and McDonald, A. T., 1985, Introduction to Fluid Mechanics, 3rd Edition, John Wiley & Sons, New York, p. 338.
Copyright © 2002
by ASME
You do not currently have access to this content.