An efficient approach for predicting radiative transfer in high temperature multicomponent gas mixtures with soot particles is presented. The method draws on the previously published multiplication approach for handling gas mixtures in the spectral line weighted-sum-of-gray-gases (SLW) model. In this method, the gas mixture is treated as a single gas whose absorption blackbody distribution function is calculated through the distribution functions of the individual species in the mixture. The soot is, in effect, treated as another gas in the mixture. Validation of the method is performed by comparison with line-by-line solutions for radiative transfer with mixtures of water vapor, carbon dioxide, and carbon monoxide with a range of soot loadings (volume fractions). Comparison is performed also with previously published statistical narrow band and classical weighted-sum-of-gray-gases solutions.

1.
Lallemant
,
N.
,
Sayre
,
A.
, and
Weber
,
R.
,
1996
, “
Evaluation of Emissivity Correlations for H2O-CO2-N2/Air Mixtures and Coupling with Solution Methods of the Radiative Transfer Equation
,”
Prog. Energy Combust. Sci.
,
22
, pp.
543
574
.
2.
O¨zisik, M. N., 1973, Radiative Transfer, A Wiley-Interscience Publication, Wiley, New York.
3.
Goody, R. M., and Yung, Y. L., 1989, Atmospheric Radiation, Clarendon Press, Oxford.
4.
Bressloff
,
N. W.
,
1999
, “
The Influence of Soot Loading on Weighted-Sum-of-Gray-Gases Solutions to the Radiative Transfer Equation Across Mixtures of Gases and Soot
,”
Int. J. Heat Mass Transf.
,
42
, pp.
3469
3480
.
5.
Edwards
,
D. K.
,
1976
, “
Molecular Gas Band Radiation
,”
Adv. Heat Transfer
,
2
, pp.
116
193
.
6.
Komornicki
,
W.
, and
Tomeczek
,
J.
,
1992
, “
Modification of the Wide-Band Gas Radiation Model for Flame Calculation
,”
Int. J. Heat Mass Transf.
,
35
, pp.
1667
1672
.
7.
Modak
,
A. T.
,
1979
, “
Radiation From Products of Combustion
,”
Fire Res.
,
1
, pp.
339
348
.
8.
Taylor
,
P. B.
, and
Foster
,
P. J.
,
1974
, “
The Total Emissivities of Luminous and Non-Luminous Flames
,”
Int. J. Heat Mass Transf.
,
17
, pp.
1591
1605
.
9.
Taylor
,
P. B.
, and
Foster
,
P. J.
,
1975
, “
Some Gray Gas Weighting Coefficients for CO2-H2O-Soot Mixtures
,”
Int. J. Heat Mass Transf.
,
18
, pp.
1331
1332
.
10.
Modest
,
M. F.
,
1991
, “
The Weighted-Sum-of-Gray-Gases Model for Arbitrary Solution Methods in Radiative Transfer
,”
ASME J. Heat Transfer
,
113
, pp.
650
656
.
11.
Denison
,
M. K.
, and
Webb
,
B. W.
,
1993
, “
A Spectral Line-Based Weighted-Sum-of-Gray-Gases Model for Arbitrary RTE Solvers
,”
ASME J. Heat Transfer
,
115
, pp.
1004
1012
.
12.
Dension, M. K., and Webb, B. W., 1996, “The Spectral Line Weighted-Sum-of-Gray-Gases Model—A Review,” in Radiative Transfer-I, Proceedings of the First International Symposium on Radiation Transfer, M. P. Mengu¨c¸, ed., Begell House, New York, pp. 193–208.
13.
Denison, M. K., and Webb, B. W., 1994, “k-Distributions and Weighted-Sum-of-Gray-Gases—A Hybrid Model,” Heat Transfer-1994, Hemisphere, Washington, D.C., 2, pp. 19–24.
14.
Denison, M. K., 1994, “A Spectral Line-Based Weighted-Sum-of-Gray-Gases Model for Arbitrary RTE Solvers,” Ph.D. dissertation, Brigham Young University, Provo, UT.
15.
Solovjov
,
V. P.
, and
Webb
,
B. W.
,
2000
, “
SLW Modeling of Radiative Transfer in Multicomponent Gas Mixtures
,”
J. Quant. Spectrosc. Radiat. Transf.
,
65
, pp.
655
672
.
16.
Siegel, R., and Howell, J. R., 1992, Thermal Radiation Heat Transfer, Hemisphere, New York.
17.
Brewster, M. Q., 1992, Thermal Radiative Transfer and Properties, Wiley, New York.
18.
Solovjov, V. P., and Webb, B. W., 1998, “Radiative Transfer Model Parameters for Carbon Monoxide at High Temperature,” in Proceedings of the Eleventh International Heat Transfer Conference, Kyongju, Korea, J. S. Lee, ed., 7, pp. 445–450.
19.
Mengu¨c¸
,
M. P.
, and
Viskanta
,
R.
,
1987
, “
Radiation Heat Transfer in Combustion Systems
,”
Prog. Energy Combust. Sci.
,
13
, pp.
97
160
.
20.
Modest, M. F., 1993, Radiative Heat Transfer, McGraw-Hill, New York.
21.
Hottel, H. C., and Sarofim, A. F., 1967, Radiative Transfer, McGraw-Hill, New York.
22.
Chang
,
S. L.
, and
Rhee
,
K. T.
,
1984
, “
Blackbody Radiation Functions
,”
Int. Commun. Heat Mass Transfer
,
1
, pp.
451
455
.
23.
Denison
,
M. K.
, and
Webb
,
B. W.
,
1993
, “
An Absorption-line Blackbody Distribution Function for Efficient Calculation of Gas Radiative Transfer
,”
J. Quant. Spectrosc. Radiat. Transf.
,
50
, pp.
499
510
.
24.
Denison
,
M. K.
, and
Webb
,
B. W.
,
1995
, “
Development and Application of an Absorption-Line Blackbody Distribution Function for CO2,
Int. J. Heat Mass Transf.
,
38
, pp.
1813
1821
.
25.
Solovjov, V. P., 1999, “Spectral Line-Based Weighted-Sum-of-Gray-Gases Modeling of Radiative Transfer in Multicomponent Mixtures of Hot Gases,” Ph.D. dissertation, Brigham Young University, Provo, UT.
26.
Rothman, L. S., Wattson, R. B., Gamache, R. R., Goorvitch, D., Hawkins, R. L., Selby, J. E. A., Camy-Peyret, C., Flaud, J.-M., and Schroeder, J., 2001, “HITEMP, the High-Temperature Molecular Spectroscopic Database,” J. Quant. Spectrosc. Radiat. Transf., (in press).
27.
Truelove, J. S., 1975, “Zone Method for Radiative Heat Transfer Calculations,” HTFS DR 33, AERE, Harwell, Oxon, UK.
You do not currently have access to this content.