The use of form factors in the treatment of radiant enclosures requires the radiosity be approximated as uniform over finite areas, and so when higher accuracy is required, an infinitesimal-area analysis should be applied. This paper describes a generic infinitesimal-area formulation suited in principle for any enclosure containing a transparent medium. The surfaces are first represented parametrically, through “non-uniform rational B-spline” (NURBS) functions, the industry standard in CAD-CAM codes. The kernel of the integral equation is obtained without user intervention, using NURBS algorithms, and then the integral equation is solved numerically. The resulting general-purpose code, which proceeds directly from surface specification to solution, is tested on problems taken from the literature.

1.
Siegel, R., and Howell, J. R., 1992, Thermal Radiation Heat Transfer, 3rd Ed., Taylor and Francis, Washington D.C., p. 288.
2.
Modest, M. F., 1993, Radiative Heat Transfer, McGraw-Hill, New York, p. 213.
3.
Eckert, E. R. G., and Drake, R. M., 1987, Analysis of Heat and Mass Transfer, 2nd Ed., Hemisphere, Washington, D.C., p. 640.
4.
Buckley
,
H.
,
1927
, “
On the Radiation From the Inside of a Circular Cylinder
,”
Philos. Mag.
,
4
, pp.
753
762
.
5.
Buckley
,
H.
,
1928
, “
On the Radiation from the Inside of a Circular Cylinder—Part II
,”
Philos. Mag.
,
6
, pp.
447
457
.
6.
Hottel
,
H. C.
, and
Keller
,
J. D.
,
1933
, “
Effect of Reradiation on Heat Transmission in Furnaces and Through Openings
,”
Trans. ASME
,
53
, pp.
39
49
.
7.
Sparrow
,
E. M.
, and
Albers
,
L. U.
,
1960
, “
Apparent Emissivity and Heat Transfer in a Long Cylindrical Hole
,”
J. Heat Transfer
,
82
, pp.
253
255
.
8.
Sparrow
,
E. M.
,
Albers
,
L. U.
, and
Eckert
,
E. R. G.
,
1962
, “
Thermal Radiation Characteristics of Cylindrical Enclosures
,”
J. Heat Transfer
,
84
, pp.
73
80
.
9.
Usiskin
,
C. M.
, and
Siegel
,
R.
,
1960
, “
Thermal Radiation from a Cylindrical Enclosure with Specified Wall Heat Flux
,”
J. Heat Transfer
,
82
, pp.
369
374
.
10.
Sparrow
,
E. M.
, and
Haji-Sheikh
,
A.
,
1965
, “
A Generalized Variational Method for Calculating Radiant Interchange Between Surfaces
,”
J. Heat Transfer
,
87
, pp.
103
109
.
11.
Sparrow
,
E. M.
, and
Haji-Sheikh
,
A.
,
1970
, “
The Solution of Radiative Exchange Problems by Least Squares Techniques
,”
Int. J. Heat Mass Transf.
,
13
, pp.
647
650
.
12.
Haji-Seikh, A., 1988, “Monte Carlo Methods” in Handbook of Numerical Heat Transfer, W. J. Minkowycz et al., eds. Wiley, New York, pp. 673–717.
13.
Siegel, R., and Howell, J. R., 1992, Thermal Radiation Heat Transfer, 3rd Ed., Taylor and Francis, Washington D.C., p. 480.
14.
Tan, Z., Wang, D., Srinivasan, K., and Prezekwas, A. J., 1998, “Numerical Simulation of Coupled Radiation and Convection for Complex Geometries,” Proceedings, 7th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, Albuquerque, New Mexico, July 15–18, 1998, AIAA.
15.
Piegl, L., and Tiller, W., 1997, The NURBS Book, 2nd Ed., Springer-Verlag, Berlin.
16.
Farin, G., 1997, Curves and Surfaces for CAGD: A Practical Guide, 4th Ed., Academic Press, New York.
17.
Adams, R. A., 1987, Calculus of Several Variables, Addison-Wesley, Don Mills, pp. 214–216.
18.
Chapara, S. C., and Canale, R. P., 1988, Numerical Methods for Engineers, 2nd Ed., McGraw-Hill, New York, p. 266.
19.
Ferziger, J. H., and Peric, M., 1996, Computational Methods for Fluid Dynamics, Springer-Verlag, Berlin, p. 59.
20.
Glassner, A. S., An Introduction to Ray-Tracing, London Academic.
21.
Qin
,
K.
,
Gong
,
M.
,
Guan
,
Y.
, and
Wang
,
W.
,
1997
, “
A New Method for Speeding Up Ray Tracing NURBS Surfaces
,”
Comput. Graph.
,
21
No.
5
, pp.
577
586
.
You do not currently have access to this content.