The basic problem of the impact and solidification of molten droplets on a substrate is of central importance to a host of processes. An important and novel such process in the area of micromanufacturing is solder jetting where microscopic solder droplets are dispensed for the attachment of microelectronic components. Despite the recent appearance of a few numerical studies focusing on the complex transient aspects of this process, no analogous experimental results have been reported to date to the best of our knowledge. Such a study is reported in this paper. Eutectic solder (63Sn37Pb) was melted to a preset superheat and used in a specially designed droplet generator to produce droplets with diameters in the range 50–100 μm. In a first series of experiments, the size, temperature, and impacting speed of the molten droplets were maintained constant. The primary variable was the temperature of the substrate that was controlled in the range from 48°C to 135°C. The dynamics of molten solder microdroplet impact and solidification on the substrate was investigated using a flash microscopy technique. The time for the completion of solidification from the moment of a solder droplet impact on the substrate varies between 150 μs and 350 μs. The dynamic interaction between the oscillation in the liquid region and the rapid advance of the solidification front was visualized, quantified, and presented in this paper. In a second series of experiments, the evolution of the wetting angle between the spreading drop and the substrate was recorded and analyzed. No quantitative agreement with Hoffman’s correlation for wetting was found. It was established that the wetting angle dynamics is strongly coupled with the evolution of the droplet free surface. Two successive regimes were distinguished during the spreading. The influence of the initial impact velocity and substrate temperature on the dynamics of the measured wetting angle was described in both regimes. To the best of our knowledge, this study presents the first published experimental results on the transient fluid dynamics and solidification of molten microdroplets impacting on a substrate at the above-mentioned time and length scales that are directly relevant to the novel solder jetting technology. [S0022-1481(00)01403-1]

1.
Orme
,
M.
,
1993
, “
A Novel Technique of Rapid Solidification Net-Form Materials Synthesis
,”
J. Mater. Eng. Perform.
,
2
, No.
3
, pp.
399
405
.
2.
Orme, M., Huang, C., and Courter, J., 1996, “Deposition Strategies for Control of Microstructures Microporosity and Surface Roughness in Droplet-Based Solid Freeform Fabrication of Structural Materials,” Melt Spinning, Strip Casting and Slab Casting, Matthys, E. F., and Truckner, W. G., eds., The Minerals, Metals and Materials Society, Warrendale, PA, pp. 125–143.
3.
Hayes
,
D. J.
, and
Wallace
,
D. B.
,
1998
, “
Solder Jet Printing: Wafer Bumping and CSP Applications
,”
Chip Scale Rev.
,
2
, No.
4
, pp.
75
80
.
4.
Waldvogel
,
J. M.
,
Diversiev
,
G.
,
Poulikakos
,
D.
,
Megaridis
,
C. M.
,
Attinger
,
D.
,
Xiong
,
B.
, and
Wallace
,
D. B.
,
1998
, “
Impact and Solidification of Molten-Metal Droplets on Electronic Substrates
,”
ASME J. Heat Transfer
,
120
, p.
539
539
.
5.
Haferl, S., Zhao, Z., Giannakouros, J., Attinger, D., and Poulikakos, D., 2000, “Transport Phenomena in the Impact of a Molten Droplet on a Surface: Macroscopic Phenomenology and Microscopic Considerations, Part I: Fluid Dynamics,” Annu. Rev. Heat Transfer, C. L. Tien, ed.
6.
Attinger, D., Haferl, S., Zhao, Z., and Poulikakos, D., 2000, “Transport Phenomena in the Impact of a Molten Droplet on a Surface: Macroscopic Phenomenology and Microscopic Considerations, Part II—Heat Transfer and Solidification,” Annu. Rev. Heat Transfer., C. L. Tien, ed., in press.
7.
Amon
,
C. H.
,
Schmaltz
,
K. C.
,
Merz
,
R.
, and
Prinz
,
F. B.
,
1996
, “
Numerical and Experimental Investigation of Interface Bonding via Substrate Remelting of an Impinging Molten Metal Droplet
,”
ASME J. Heat Transfer
,
118
, pp.
164
172
.
8.
Bennett
,
T.
, and
Poulikakos
,
D.
,
1994
, “
Heat Transfer Aspects of Splat-Quench Solidification: Modeling and Experiment
,”
J. Mater. Sci.
,
29
, pp.
2025
2039
.
9.
Pasandideh-Fard
,
M.
,
Bohla
,
R.
,
Chandra
,
S.
, and
Mostaghimi
,
J.
,
1998
, “
Deposition of Tin Droplets on a Steel Plate: Simulations and Experiments
,”
Int. J. Heat Mass Transf.
,
41
, No.
19
, pp.
2929
2945
.
10.
Wang
,
G. X.
, and
Matthys
,
E. F.
,
1996
, “
Experimental Investigation of Interfacial Thermal Conductance for Molten Metal Solidification on a Substrate
,”
ASME J. Heat Transfer
,
118
, pp.
157
163
.
11.
Blake
,
T. D.
, and
Haynes
,
J. M.
,
1969
, “
Kinetics of Liquid/Liquid Displacement
,”
J. Colloid Interface Sci.
,
30
, pp.
421
423
.
12.
Dussan
,
E. B.
,
1979
, “
On the Spreading of Liquids on Solid Surfaces: Static and Dynamic Contact Lines
,”
Annu. Rev. Fluid Mech.
,
11
, pp.
371
400
.
13.
Hoffman
,
R. L.
,
1975
, “
A Study of the Advancing Interface, I—Interface Shape in Liquid-Gas Systems
,”
J. Colloid Interface Sci.
,
50
, pp.
228
241
.
14.
Fukai
,
J.
,
Shiba
,
Y.
,
Yamamoto
,
T.
,
Miyatake
,
O.
,
Poulikakos
,
D.
,
Megaridis
,
C. M.
, and
Zhao
,
Z.
,
1995
, “
Wetting Effects on the Spreading of a Liquid Droplet Colliding With a Flat Surface: Experimental and Modeling
,”
Phys. Fluids
,
7
, No.
2
, pp.
236
247
.
15.
Waldvogel
,
J. M.
, and
Poulikakos
,
D.
,
1997
, “
Solidification Phenomena in Picoliter Size Solder Droplet Deposition on a Composite Substrate
,”
Int. J. Heat Mass Transf.
,
40
, No.
2
, pp.
295
309
.
16.
Xiong
,
B.
,
Magaridis
,
C. M.
,
Poulikakos
,
D.
, and
Hoang
,
H.
,
1998
, “
An Investigation of Key Factors Affecting Solder Microdroplet Deposition
,”
ASME J. Heat Transfer
,
120
, pp.
259
270
.
17.
Inada, S., Miyasaka, Y., Mishida, K., and Chandratilleke, G. R., 1983, “Transient Temperature Variation of a Hot Wall due to an Impinging Water Drop: Effect of Subcooling of the Water Drop,” Proceedings of the Joint ASME/JSME Thermal Engineering Conference, Vol. 1, ASME, New York, pp. 173–182.
18.
Pederson
,
C. O.
,
1970
, “
An Experimental Study of the Dynamic Behavior and Heat Transfer Characteristics of Water Droplets Impinging Upon a Heated Surface
,”
Int. J. Heat Mass Transf.
,
13
, pp.
369
381
.
19.
Savic, P., and Boult, G. T., 1955, “The Fluid Flow Associated With the Impact of Liquid Drops With Solid Surfaces,” Report No. MT-26, Nat. Res. Council Canada.
20.
Toda
,
S.
,
1974
, “
A Study of Mist Cooling” (2nd Report: Theory of Mist Cooling and Its Fundamental Experiments
),
Heat Transfer Japan. Res.
,
3
, No.
1
, pp.
1
44
.
21.
Ueda
,
T.
,
Enomoto
,
T.
, and
Kanetsuki
,
M.
,
1979
, “
Heat Transfer Characteristics and Dynamic Behavior of Saturated Droplets Impinging on a Heated Vertical Surface
,”
Bull. JSME
,
22
, No.
167
, pp.
724
732
.
22.
Chandra
,
S.
, and
Avedisian
,
C. T.
,
1991
, “
On the Collision of a Droplet With a Solid Surface
,”
Proc. R. Soc. London, Ser. A
,
432
, pp.
13
41
.
23.
Stow
,
C. D.
, and
Hadfield
,
M. G.
,
1981
, “
An Experimental Investigation of Fluid Flow Resulting From the Impact of a Water Drop With an Unyielding Dry Surface
,”
Proc. R. Soc. London, Ser. A
,
373
, pp.
419
441
.
24.
Wachters
,
L. H.
, and
Westerling
,
N. A. J.
,
1966
, “
The Heat Transfer From a Hot Wall to Impinging Water Drop in the Spherical State
,”
Chem. Eng. Sci.
,
21
, pp.
1047
1056
.
25.
Mundo
,
C.
,
Sommerfeld
,
M.
, and
Tropea
,
C.
,
1995
, “
Droplet-Wall Collisions: Experimental Studies of the Deformation and Breakup Process
,”
Int. J. Multiphase Flow
,
21
, pp.
151
173
.
26.
Yarin
,
A. L.
, and
Weiss
,
D. A.
,
1995
, “
Impact of Drops on Solid Surfaces: Self-Similar Capillary Waves and Splashing as a New Type of Kinematic Discontinuity
,”
J. Fluid Mech.
,
283
, pp.
141
173
.
27.
Ohl
,
C. D.
,
Philipp
,
A.
, and
Lauterborn
,
W.
,
1995
, “
Cavitation Bubble Collapse Studies at 20 Million Frames Per Second
,”
Ann. Phys. (Leipzig)
,
4
, No.
1
, pp.
26
34
.
28.
Levin
,
Z.
, and
Hobbs
,
P. V.
,
1971
, “
Splashing of Water Drops on Solid and Wetted Surfaces: Hydrodynamics and Charge Separations
,”
Philos. Trans. R. Soc. London, Ser. A
,
269
, pp.
555
585
.
29.
Hayes, D. J., Wallace, D. B., and Boldman, M. T., 1992, “Picoliter Solder Droplet Dispension,” ISHM Symposium 92 Proceedings, pp. 316–321.
30.
Arx, M. v., 1998, “Thermal Properties of CMOS Thin Films,” Ph.D. thesis, ETH Zurich.
31.
Poulikakos, D., 1994, Conduction Heat Transfer, Prentice-Hall, Englewood Cliffs, NJ.
32.
Bennett
,
T.
, and
Poulikakos
,
D.
,
1993
, “
Splat-Quench Solidification: Estimating the Maximum Spreading of a Droplet Impacting a Solid Surface
,”
J. Mater. Sci.
,
28
, pp.
963
970
.
33.
Schiaffino
,
S.
, and
Sonin
,
A. A.
,
1997
, “
Molten Droplet Deposition and Solidification at Low Weber Numbers
,”
Phys. Fluids
,
9
, pp.
3172
3187
.
34.
Fukai
,
J.
,
Zhao
,
Z.
,
Poulikakos
,
D.
,
Megaridis
,
C. M.
, and
Miyatake
,
O.
,
1993
, “
Modeling of the Deformation of a Liquid Droplet Impinging Upon a Flat Surface
,”
Phys. Fluids A
,
5
, pp.
2588
2599
.
35.
Schiaffino
,
S.
, and
Sonin
,
A. A.
,
1997
, “
Motion and Arrest of a Molten Contact Line on a Cold Surface: An Experimental Study
,”
Phys. Fluids
,
9
, pp.
2217
2226
.
36.
Pasandideh-Fard
,
M.
,
Qiao
,
Y. M.
,
Chandra
,
S.
, and
Mostaghimi
,
J.
,
1996
, “
Capillary Effects During Droplet Impact on a Solid Surface
,”
Phys. Fluids
,
8
, pp.
S650–S659
S650–S659
.
37.
Zarzalejo
,
L. J.
,
Schmaltz
,
K. S.
, and
Amon
,
C. H.
,
1999
, “
Molten Droplet Solidification and Substrate Remelting in Microcasting, Part I—Numerical Modeling and Experimental Varification
,”
Heat Mass Transfer
,
34
, pp.
477
485
.
38.
Tanner
,
L. H.
,
1979
, “
The Spreading of Silicon Oil Drops on Horizontal Surfaces
,”
J. Phys. D: Appl. Phys.
,
12
, pp.
1473
1484
.
39.
Voinov
,
O. V.
,
1976
, “
Hydrodynamics of Wetting
,”
Fluid Dyn.
,
11
, pp.
714
721
.
40.
Kistler, S. F., 1993, “Hydrodynamics of Wetting,” Wettability, Berg, J. C., ed., Marcel Dekker, New York.
41.
Haferl, S., Poulikakos, D., and Zhao, Z., 1999, “Employing Scanning Force Microscopy to Investigate the Dynamic Wetting Behavior of Liquid Microdroplets on Smooth Surfaces: Gathered Experiences,” Poster Presentation, European Research Conferences (EURESCO) Solid/Fluid Interfaces: Complex Fluid Interfaces, Castelvecchio Pascoli, Italy.
42.
Waldvogel
,
J. M.
,
Poulikakos
,
D.
,
Wallace
,
D. B.
, and
Marusak
,
R.
,
1996
, “
Transport Phenomena in Picoliter Size Solder Droplet Dispension
,”
ASME J. Heat Transfer
,
118
, pp.
148
156
.
You do not currently have access to this content.