Self heating diminishes the reliability of silicon-on-insulator (SOI) transistors, particularly those that must withstand electrostatic discharge (ESD) pulses. This problem is alleviated by lateral thermal conduction in the silicon device layer, whose thermal conductivity is not known. The present work develops a technique for measuring this property and provides data for layers in wafers fabricated using bond-and-etch-back (BESOI) technology. The room-temperature thermal conductivity data decrease with decreasing layer thickness, ds, to a value nearly 40 percent less than that of bulk silicon for ds = 0.42 μm. The agreement of the data with the predictions of phonon transport analysis between 20 and 300 K strongly indicates that phonon scattering on layer boundaries is responsible for a large part of the reduction. The reduction is also due in part to concentrations of imperfections larger than those in bulk samples. The data show that the buried oxide in BESOI wafers has a thermal conductivity that is nearly equal to that of bulk fused quartz. The present work will lead to more accurate thermal simulations of SOI transistors and cantilever MEMS structures.

1.
Amerasekera
A.
,
Van Abeelen
W.
,
Van Roozendaal
L.
,
Hannemann
M.
, and
Schofield
P.
,
1992
, “
ESD Failure Modes: Characteristics Mechanisms, and Process Influences
,”
IEEE Trans. Electron Devices
, Vol.
39
, pp.
430
436
.
2.
Beckmann, P., and Spizzichino, A., 1963, The Scattering of Electromagnetic Waves from Rough Surfaces, Pergamon Press Inc., New York, pp. 29, 81.
3.
Berman, R., 1976, Thermal Conduction in Solids, Oxford University Press, Oxford, United Kingdom, pp. 23, 73-75.
4.
Berman
R.
,
Foster
E. L.
, and
Ziman
J. M.
,
1955
, “
Thermal Conduction in Artificial Sapphire Crystals at Low Temperatures
,”
Proc. Roy. Soc. A
, Vol.
231
, pp.
130
144
.
5.
Callaway
J.
,
1959
, “
Model for Lattice Thermal Conductivity at Low Temperatures
,”
Phys. Rev.
, Vol.
113
, pp.
1046
1051
.
6.
Cellar
G. K.
, and
White
A. E.
,
1992
, “
Buried Oxide and Silicide Formation by High-Dose Implantation in Silicon
,”
MRS Bulletin
, Vol.
17
, No.
6
, pp.
40
46
.
7.
Chen
G.
,
1997
, “
The Size and Interface Effects on the Thermal Conductivity of Superlattices and Periodic Thin-Film Structures
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
119
, pp.
220
229
.
8.
Chen
G.
, and
Tien
C. L.
,
1993
, “
Thermal Conductivities of Quantum Well Structures
,”
Journal of Thermophysics and Heat Transfer
, Vol.
7
, No.
2
, pp.
311
318
.
9.
Chui
B. W.
,
Stowe
T. D.
,
Kenny
T. W.
,
Mamin
H. J.
,
Terris
B. D.
, and
Rugar
D.
,
1996
, “
Low-Stiffness Silicon Cantilevers for Thermal Writing and Piezoresistive Readback with the Atomic Force Microscope
,”
Applied Physics Letters
, Vol.
69
, pp.
2767
2769
.
10.
Goodson, K. E., and Cooper, P. T., 1995, “The Effect of High-Energy Electrons on Lattice Conduction in Semiconductor Devices,” Proceedings of the Symposium on Thermal Science and Engineering in Honor of Chancellor Chang-Lin Tien, R. Buckius, ed., Office of Printing Services, University of Illinois at Urbana-Champaign, pp. 153–159.
11.
Goodson
K. E.
,
Flik
M. I.
,
Su
L. T.
, and
Antoniadis
D. A.
,
1993
, “
Annealing Temperature Dependence of Thermal Conductivity of CVD Silicon-Dioxide Layers
,”
IEEE Electron Device Letters
, Vol.
14
, pp.
490
492
.
12.
Goodson
K. E.
,
Flik
M. I.
,
Su
L. T.
, and
Antoniadis
D. A.
,
1994
, “
Prediction and Measurement of the Thermal Conductivity of Amorphous Dielectric Layers
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
116
, pp.
317
324
.
13.
Goodson
K. E.
,
Flik
M. I.
,
Su
L. T.
, and
Antoniadis
D. A.
,
1995
, “
Prediction and Measurement of Temperature Fields in Silicon-on-Insulator Electronic Circuits
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
117
, pp.
574
581
.
14.
Holland
M. G.
,
1963
, “
Analysis of Lattice Thermal Conductivity
,”
Phys. Rev.
, Vol.
132
, No.
6
, pp.
2461
2471
.
15.
Ma
D. I.
,
Campisi
J. G.
,
Qadri
S. B.
, and
Peckerar
M. C.
,
1991
, “
Characterization of Silicon on Insulator Substrates Using Reflection Mode Double-Crystal X-ray Topography
,”
Thin Solid Films
, Vol.
206
, pp.
27
33
.
16.
Marx
E.
, and
Vorburger
T. V.
,
1989
, “
Direct and Inverse Problems for Light Scattered by Rough Surfaces
,”
Applied Optics
, Vol.
29
, No.
25
, pp.
3613
3626
.
17.
Mastrangelo
C. H.
, and
Mu¨ller
R. S.
,
1988
, “
Thermal Diffusivity of Heavily Doped Low Pressure Chemical Vapor Deposited Polycrystalline Silicon Films
,”
Sensors and Materials
, Vol.
3
, pp.
133
141
.
18.
Maszara
W. P.
,
1991
, “
Silicon-On-Insulator by Wafer Bonding: A Review
,”
J. Electrochem. Soc
, Vol.
138
, No.
1
, pp.
341
347
.
19.
Paul
O. M.
,
Korvink
J.
, and
Baltes
H.
,
1993
, “
Thermal Conductivity of CMOS Materials for the Optimization of Microsensors
,”
Journal of Micromechanics and Microengineering
, Vol.
3
, No.
3
, pp.
110
12
.
20.
Paul
O. M.
,
Korvink
J.
, and
Baltes
H.
,
1994
, “
Determination of the Thermal Conductivity of CMOS IC Polysilicon
,”
Sensors and Actuators A (Physical)
, Vol.
A41
, No.
1–3
, pp.
161
164
.
21.
Peters
L.
,
1993
, “
SOI Takes Over Where Silicon Leaves Off
,”
Semiconductor International
, Vol.
16
, pp.
48
51
.
22.
Savvides
N.
, and
Goldsmid
H. J.
,
1973
, “
The Effect of Boundary Scattering on the High-Temperature Thermal Conductivity of Silicon
,”
J. Phys. C: Solid State Phys.
, Vol.
6
, pp.
1701
1708
.
23.
Sondheimer
E. H.
,
1952
, “
The Mean Free Path of Electrons in Metals
,”
Adv. Phys.
, Vol.
1
, pp.
1
42
.
24.
Tai
Y. C.
,
Mastrangelo
C. H.
, and
Mu¨ller
R. S.
,
1988
, “
Thermal Diffusivity of Heavily Doped Low-Pressure Chemical Vapor Deposited Polycrystalline Silicon Films
,”
J. Appl. Phys.
, Vol.
63
, pp.
1442
1447
.
25.
Touloukian
Y. S.
,
Powell
R. W.
,
Ho
C. Y.
, and
Klemens
P. G.
,
1970
a, “
Thermal Conductivity of Metallic Elements and Alloys
,”
Thermophysical Properties of Matter
, Vol.
1
, New York: IFI/Plenum, p.
333, 339
333, 339
.
26.
Touloukian
Y. S.
,
Powell
R. W.
,
Ho
C. Y.
, and
Klemens
P. G.
,
1970
b, “
Thermal Conductivity of Nonmetallic Solids
,” from
Thermophysical Properties of Matter
, Vol.
2
, IFI/Plenum, New York, p.
193
193
.
27.
Von Arx
M.
, and
Baltes
H.
,
1992
, “
A Microstructure for Measurement of Thermal Conductivity of Polysilicon Thin Films
,”
Journal of Microelectromechanical Systems
, Vol.
1
, No.
4
, pp.
193
6
.
28.
Von Arx
M.
,
Paul
O. M.
, and
Baltes
H.
,
1995
, “
Determination of the Heat Capacity of CMOS Layers for Optimal CMOS Sensor Design
,”
Sensors and Actuators A (Physical)
, Vol.
A47
, No.
1–3
, pp.
428
31
.
29.
Yu
X. Y.
,
Zhang
L.
, and
Chen
G.
,
1996
, “
Thermal-Wave Measurement of Thin-Film Thermal Diffusivity with Different Laser Beam Configurations
,”
Rev. Sci. Instrum.
, Vol.
67
, No.
6
, pp.
2312
2316
.
30.
Zheng, X. Y., Li, S., Chen, M., and Wang, K. L., 1996, “Giant Reduction in Lateral Thermal Conductivity of Thin Nitride/Silicon/Oxide Membrane Measured with a Micro Thermal Bridge,” Proc. Int. Mech. Eng. Congress and Exp., C. T. Avedisian et al., eds., ASME, New York, pp. 93–98.
31.
Ziman, J. M., 1960, Electrons and Phonons, Oxford University Press, Oxford, United Kingdom, pp. 456–460.
This content is only available via PDF.
You do not currently have access to this content.