This paper combines a theoretical model with experimental measurements to elucidate the role of key operating parameters affecting solder microdroplet deposition in the electronics manufacturing industry. The experimental investigation is used to evaluate the final deposit (bump) shapes and trends predicted by the model. The effects of substrate temperature, material composition, layer thickness, and thermal contact resistance (including surface oxidation) are delineated. Solder-deposit shape comparisons between experiments and modeling suggest that the value of thermal contact resistance may change with process parameters, and is probably dependent on the solder phase. It is established that inferences regarding the overall shape or solidification times of solder bumps using limited modeling trends should be made only after careful consideration of the substrate composition, accurate representation of the thermal contact resistance, and adequate resolution of the fluid dynamical oscillatory motion and its effects on solidification rates. It is shown that modeling tools can be used in conjunction with experiments to promote our fundamental understanding of the transport processes in the complex solder jetting technology.

1.
Amon
C. H.
,
Schmaltz
K. S.
,
Merz
R.
, and
Prinz
F. B.
,
1996
, “
Numerical and Experimental Investigation of Interface Bonding via Substrate Remelting of an Impinging Molten Metal Droplet
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
118
, pp.
164
172
.
2.
Bushko
W.
, and
Grosse
I. R.
,
1991
, “
New Finite Element Method for Multidimensional Phase Change Heat Transfer Problems
,”
Num. Heat Transfer
, Part B, Vol.
19
, pp.
31
48
.
3.
Collings
E. W.
,
Markworth
A. J.
,
McCoy
J. K.
, and
Saunders
J. H.
,
1990
, “
Splat-Quench Solidification of Freely Falling Liquid-Metal Drops by Impact on a Planar Substrate
,”
J. Mater. Set
, Vol.
25
, pp.
3677
3682
.
4.
Delplanque
J.-P.
,
Lavernia
E. J.
, and
Rangel
R. H.
,
1996
, “
Multidirectional Solidification Model for the Description of Micropore Formation in Spray Deposition Processes
,”
Numer. Heat Transfer A
, Vol.
30
, pp.
1
18
.
5.
Dussan
V. E. B.
,
1979
, “
On the Spreading of Liquids on Solid Surfaces: Static and Dynamic Contact Lines
,”
Ann. Rev. Fluid Mech.
, Vol.
11
, pp.
371
400
.
6.
Gao
F.
, and
Sonin
A. A.
,
1994
, “
Precise Deposition of Molten Microdrops: the Physics of Digital Microfabrication
,”
Proc. R. Soc. Lond. A
, Vol.
444
, pp.
533
554
.
7.
Hayes
D. J.
,
Wallace
D. B.
,
Boldman
M. T.
, and
Marusak
R. E.
,
1993
, “
Picoliter Solder Droplet Dispensing
,”
Int. J. Microcircuits and Electronic Packaging
, Vol.
16
, pp.
173
180
.
8.
Hewitt, G. F., Shires, G. L., and Bott, T. R., 1994, Process Heat Transfer, CRC Press, Boca Raton, FL.
9.
Kang
B.
,
Waldvogel
J. M.
, and
Poulikakos
D.
,
1995
, “
Remelting Phenomena in the Process of Splat Solidification
,”
J. Mater. Set
, Vol.
30
, pp.
4912
4925
.
10.
Lide, D. R., ed., 1995, CRC Handbook of Chemistry and Physics, 75th ed., CRC Press, Cleveland, OH.
11.
Liu
W.
,
Wang
G. X.
, and
Matthys
E. F.
,
1995
, “
Thermal Analysis and Measurements for a Molten Metal Drop Impacting on a Substrate: Cooling, Solidification and Heat Transfer Coefficient
,”
Int. J. Heat/Mass Transfer
, Vol.
38
, pp.
1387
1395
.
12.
Madejski
J.
,
1976
, “
Solidification of Droplets on a Cold Substrate
,”
Int. J. Heat Mass Transfer
, Vol.
19
, pp.
1009
1013
.
13.
Megaridis
C. M.
,
1993
, “
Presolidification Liquid Metal Cooling Under Convective Conditions
,”
Atomization and Sprays
, Vol.
3
, pp.
171
191
.
14.
Orme
M. E.
,
Huang
C.
, and
Courter
J.
,
1996
, “
Precision Droplet-Based Manufacturing and Material Synthesis: Fluid Dynamics and Thermal Control Issues
,”
Atomization and Sprays
, Vol.
6
, pp.
305
329
.
15.
Poulikakos
D.
, and
Waldvogel
J. M.
,
1996
, “
Heat Transfer and Fluid Dynamics in the Process of Spray Deposition
,”
Advances in Heat Transfer
, Vol.
28
, pp.
1
73
.
16.
Rein
M.
,
1995
, “
Nonlinear Analysis of Two-Dimensional Compressible Liquid-Liquid Impact
,”
Eur. J. Meck, B/Fluids
, Vol.
14
, pp.
301
322
.
17.
Trapaga
G.
,
Matthys
E. F.
,
Valencia
J. J.
, and
Szekely
J.
,
1992
, “
Fluid Flow, Heat Transfer, and Solidification of Molten Metal Droplets Impinging on Substrates: Comparison of Numerical and Experimental Results
,”
Metall. Trans. B
, Vol.
23B
, pp.
701
718
.
18.
Waldvogel
J. M.
,
Poulikakos
D.
,
Wallace
D. B.
, and
Marusak
R.
,
1996
, “
Transport Phenomena in Picoliter Size Solder Droplet Dispension
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
118
, pp.
148
156
.
19.
Waldvogel
J. M.
, and
Poulikakos
D.
,
1997
, “
Solidification Phenomena in Picoliter Size Solder Droplet Deposition on a Composite Substrate
,”
Int. J. Heat Mass Transfer
, Vol.
40
, pp.
295
309
.
20.
Wang
G. X.
, and
Matthys
E. F.
,
1996
, “
Experimental Investigation of Interfacial Thermal Conductance for Molten Metal Solidification on a Substrate
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
118
, pp.
157
163
.
21.
Watanabe
T.
,
Kuribayashi
I.
,
Honda
T.
, and
Kanzawa
A.
,
1992
, “
Deformation and Solidification of a Droplet on a Cold Substrate
,”
Chem. Eng. Sci.
, Vol.
47
, pp.
3059
3065
.
22.
Zhao
Z.
,
Poulikakos
D.
, and
Fukai
J.
,
1996
a, “
Heat Transfer and Fluid Dynamics During the Collision of a Liquid Droplet on a Substrate—I. Modeling
,”
Int. J. Heat Mass Transfer
, Vol.
39
, pp.
2771
2789
.
23.
Zhao
Z.
,
Poulikakos
D.
, and
Fukai
J.
,
1996
b, “
Heat Transfer and Fluid Dynamics During the Collision of a Liquid Droplet on a Substrate—II. Experiments
,”
Int. J. Heat Mass Transfer
, Vol.
39
, pp.
2791
2802
.
This content is only available via PDF.
You do not currently have access to this content.