The past efforts in applying linear Taylor instability theory to the prediction of heat transfer during film boiling on a horizontal surface have suffered from the fact that empirical correlations must be used to define the shape of vapor-liquid interfaces and to determine the transport of mass and heat across these interfaces. The objective of this study is to clarify the physics of film boiling and to predict heat transfer coefficients through complete numerical simulation of the evolving interface between superposed layers of immiscible fluids. A coordinate transformation technique supplemented by a numerical grid generation method and a second-order projection method are combined to solve for the flow and temperature fields associated with an evolving interface. From the numerical simulation, the film thickness and, in turn, the heat transfer coefficient are found to vary both spatially and temporally. Increased wall superheat not only thickens the vapor film in the valley but also enlarges the vapor bulge. The effect of increased system pressure is to slow down the growth of the interface.

1.
Bell
J. B.
,
Colella
P.
, and
Glaz
H. M.
,
1989
, “
A Second-Order Projection Method for the Incompressible Navier-Stokes Equations
,”
J. of Comput. Phys.
, Vol.
85
, pp.
257
283
.
2.
Berenson
P. J
,
1961
, “
Film Boiling Heat Transfer From a Horizontal Surface
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
83
, pp.
351
362
.
3.
Chorin
A. J.
,
1968
, “
Numerical Solution of the Navier-Stokes Equations
,”
Math. Comput.
, Vol.
22
, pp.
745
762
.
4.
Dhir
V. K.
,
Castle
J. N.
, and
Catton
I.
,
1977
, “
Role of Taylor Instability on Sublimation of a Horizontal Slab of Dry Ice
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
99
, pp.
411
418
.
5.
Greene, G. A., and Irvine, T. F., 1986, “Film Boiling of R-11 on Liquid Metal Surfaces,” Proceedings of the Eighth International Heat Transfer Conference, Vol. 4, C. L. Tien et al., eds., San Francisco, CA. pp. 2049–2054.
6.
Henry, R. E., Quinn, D. J., and Spleha, E. A., 1974, “An Experimental Study of the Minimum Film Boiling Point for Liquid-Liquid Systems,” Proceedings of the Fifth International Heat Transfer Conference, Tokyo, Japan. Vol. 4, Paper No. B 3.5.
7.
Hosler
E. R.
, and
Westwater
J. W.
,
1962
, “
Film Boiling on a Horizontal Plate
,”
ARS J.
, Vol.
32
, pp.
553
560
.
8.
Jin
G.
, and
Braza
M.
,
1993
, “
A Nonreflecting Outlet Boundary Condition for Incompressible Unsteady Navier-Stokes Calculations
,”
J. of Comput. Phys.
, Vol.
107
, pp.
239
253
.
9.
Karki
K. C
, and
Patankar
S. V.
,
1988
, “
Calculation Procedure for Viscous Incompressible Flows in Complex Geometries
,”
Numerical Heat Transfer
, Vol.
14
, pp.
295
307
.
10.
Kim
J.
, and
Moin
P.
,
1985
, “
Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations
,”
J. of Comput. Phys.
, Vol.
59
, pp.
308
323
.
11.
Klimenko
V. V.
,
1981
, “
Film Boiling on a Horizontal Plate-New Correlation
,”
Int. J. Heat Mass Transfer
, Vol.
24
, pp.
69
79
.
12.
Klimenko
V. V.
, and
Shelepen
A. G.
,
1982
, “
Film Boiling on a Horizontal Plate-A Supplementary Communication
,”
Int. J. Heat Mass Transfer
, Vol.
25
, pp.
1611
1613
.
13.
Lienhard, J. H., and Dhir, V. K., 1973, “Extended Hydrodynamic Theory of the Peak and Minimum Pool Boiling Heat Fluxes,” NASA CR-2270.
14.
Lienhard
J. H.
, and
Dhir
V. K.
,
1980
, “
On the Prediction of the Minimum Pool Boiling Heat Flux
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
102
, pp.
457
460
.
15.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington, D.C.
16.
Ramilison
J. M.
, and
Lienhard
J. H.
,
1987
, “
Transition Boiling Heat Transfer and the Film Transition Regime
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
109
, pp.
746
752
.
17.
Rosenfeld
M.
,
Kwak
D.
, and
Vinokur
M.
,
1991
, “
A Fractional Step Solution Method for the Unsteady Incompressible Navier-Stokes Equations in Generalized Systems
,”
J. of Comput. Phys.
, Vol.
94
, pp.
102
137
.
18.
Sernas
V.
,
Lienhard
J. H.
, and
Dhir
V. K.
,
1973
, “
The Taylor Wave Configuration During Boiling From a Flat Plate
,”
Int. J. Heat Mass Transfer
, Vol.
16
, pp.
1820
1821
.
19.
Siegel, R., and Howell, J. R., 1981, Thermal Radiation Heat Transfer, Hemisphere, Washington, DC.
20.
Siviour, J. B., and Ede, A. J., 1970, “Heat Transfer in Subcooled Pool Film Boiling,” Proceedings of the Fourth International Heat Transfer Conference, Vol. 5, Paper No. B3.12, U. Grigull and E. Hahne, eds., Paris-Versailles, France.
21.
Son, G., 1996, Numerical Simulation of Nonlinear Taylor Instability with Application to Film Boiling, Melting and Sublimation, Ph.D. dissertation, University of California, Los Angeles.
22.
Streett, C. L., and Hussaini, M. Y., 1987, “Finite Length Effects on Taylor-Couette Flow,” Stability of Time-Dependent and Spatially Varying Flows, D. L. Dwoyer, and M. Y. Hussaini, eds., Springer-Verlag, New York.
23.
Taghavi-Tafreshi
K.
,
Dhir
V. K.
, and
Catton
I.
,
1979
, “
Thermal and Hydrodynamic Phenomena Associated With Melting of a Horizontal Substrate Placed Beneath a Heavier Immiscible Liquid
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
101
, pp.
318
325
.
24.
Thompson, J. F., 1982, Numerical Grid Generation, Elsevier Science Publishing Co., New York.
25.
Thompson, J. F., Warsi, Z. U. A., and Mastin, C. W., 1985, Numerical Grid Generation, Foundations and Applications, Elsevier Science Publishing Co., North-Holland.
26.
Zuber, N., 1959, Hydrodynamic Aspects of Boiling Heat Transfer, Ph.D. dissertation, University of California, Los Angeles.
This content is only available via PDF.
You do not currently have access to this content.