Radiative heat transfer inside a cylindrical tube is modeled using a statistical method called the discrete probability function (DPF) method. The DPF method involves solution of the equation of radiative heat transfer using Lagrangian simulations of representative photon trajectories on a discrete spatial grid. The DPF method is different from the Markov Chain method in terms of associating a probability with each state of the photon rather than a transition from one state to another. The advantages and disadvantages of the DPF method in comparison to the Markov Chain method are demonstrated in this paper using two practical applications of the cylindrical tube radiative heat transfer problem. The cylindrical tube has a hot source at one end and a detector at the other end. The cylindrical wall absorbs and reflects (both diffusely and specularly) the radiation incident on it. The present calculations have applications in: (1) intrusive pyrometry with collimating light guides, and (2) measurement of the spectral absorption and reflection coefficients of coatings using two, coated cylindrical tubes as specimen. The results show that: (1) the effect of light guide surface properties on errors in pyrometry must be carefully assessed, and (2) the method can be used for a convenient evaluation of radiative properties of coatings.

1.
Bevans
J. T.
, and
Edwards
D. K.
,
1965
, “
Radiation Exchange in an Enclosure With Directional Wall Properties
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
87
, pp.
388
396
.
2.
Billings
R. L.
,
Barnes
J. W.
,
Howell
J. R.
, and
Slotboom
O. E.
,
1991
, “
Markov Analysis of Radiative Transfer in Specular Enclosures
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
113
, pp.
429
436
.
3.
Bobco
R. P.
,
1964
, “
Radiation Heat Transfer in Semigray Enclosures with Specularly and Diffusely Reflecting Surfaces
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
86
, pp.
123
130
.
4.
Burgart
C. E.
, and
Stevens
P. N.
,
1970
, “
A General Method of Importance Sampling the Angle of Scattering in Monte Carlo Calculations
,”
Nucl. Sci. Eng.
, Vol.
42
, pp.
306
323
.
5.
Burns
P. J.
, and
Pryor
D. V.
,
1989
, “
Vector and Parallel Monte Carlo Radiative Heat Transfer Simulation
,”
Numerical Heat Transfer
, Vol.
16
, pp.
97
124
.
6.
Burns
P. J.
,
Maltby
J. D.
, and
Christon
M. A.
,
1990
, “
Large-Scale Surface to Surface Transport for Photons and Electrons via Monte Carlo
,”
Computing Systems in Engineering
, Vol.
1
, pp.
75
99
.
7.
Burns, P. J., Loehrke, R. I., Dolaghan, J. S., and Maltby, J. D., 1992, “Photon Tracing in Axisymmetric Enclosures,” Developments in Radiative Heat Transfer, HTD-Vol. 23, ASME, New York, pp. 93–99.
8.
Corlett
R. C
,
1966
, “
Direct Monte Carlo Calculation of Radiative Heat Transfer in Vacuum
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
88
, pp.
376
382
.
9.
Drost, M. K., and Welty, J. R., 1992, “Monte Carlo Simulation of Radiation Heat Transfer in Arrays of Fixed Discrete Surfaces using Cell-to-Cell Photon Transport,” Developments in Radiative Heat Transfer, HTD-Vol. 203, ASME, New York, pp. 85–91.
10.
Eckert
E. R. G.
, and
Sparrow
E. M.
,
1961
, “
Radiative Heat Exchange Between Surfaces with Specular Reflection
,”
Int. J. Heat Mass Transfer
, Vol.
3
, pp.
42
54
.
11.
Emery
A. F.
, and
Carson
W. W.
,
1968
, “
A Modification to the Monte Carlo Method-The Exodus Method
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
90
, pp.
328
332
.
12.
Haji-Sheik, 1988, “Monte Carlo Methods,” Handbook of Numerical Heat Transfer, W. J. Minkowsycz et al., eds., John Wiley & Sons Inc., New York.
13.
Hottel, H. C., 1954, Heat Transmission, McGraw-Hill Book Co., New York, NY.
14.
Howell, J. R., 1968, “Application of Monte Carlo to Heat Transfer Problems,” Advances in Heat Transfer, Vol. 5, pp. 1–54. T. F. Irvine Jr. and J. P. Harnett, eds., Academic Press, New York.
15.
Howell
J. R.
, and
Perlmutter
M.
,
1964
, “
Monte Carlo Solution of Thermal Transfer Through Radiant Media Between Gray Walls
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
86
, pp.
116
122
.
16.
Kahn
H.
, and
Marshall
A. W.
,
1953
, “
Methods of Reducing Sample Size in Monte Carlo Computations
,”
J. Operations Res. Society of America
, Vol.
1
, pp.
263
278
.
17.
Lanore
J. M.
,
1971
, “
Weighting and Biasing of a Monte Carlo Calculation for Very Deep Penetration of Radiation
,”
Nucl. Sci. Eng.
, Vol.
45
, pp.
66
72
.
18.
Lin
S. H.
, and
Sparrow
E. M.
,
1965
, “
Radiant Exchange Among Curved Specularly Reflecting Surfaces-Application to Cylindrical and Conical Cavities
,”
ASME JOURNAL OF HEAT TRANSFER
, Trans. ASME, Series C, Vol.
87
, pp.
123
130
.
19.
Mahan
J. R.
,
Kingsolver
J. B.
, and
Mears
D. T.
,
1979
, “
Analysis of Diffuse-Specular Axisymmetric Surfaces with Application to Parabolic Reflectors
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
101
, pp.
689
694
.
20.
Maltby
J. D.
, and
Burns
P. J.
,
1991
, “
Performance, Accuracy, and Convergence in a Three-Dimensional Monte Carlo Radiative Heat Transfer Simulation
,”
Numerical Heat Transfer
, Vol.
19
, pp.
191
209
.
21.
Modest
M. F.
,
1978
, “
Three-Dimensional Radiative Exchange Factors for Non-Gray, Non-Diffuse Surfaces
,”
Numerical Heat Transfer
, Vol.
1
, pp.
403
416
.
22.
Naraghi
M. H. N.
, and
Chung
B. T. F.
,
1984
, “
A Stochastic Approach for Radiative Exchange in Enclosures with Nonparticipating Medium
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
106
, pp.
690
698
.
23.
Oppenheim
A. K.
,
1956
, “
Radiation Analysis by the Network Method
,”
Trans. ASME
, Vol.
78
, pp.
725
735
.
24.
Parthasarathy, G., Patankar, S. V., Chai, J. C., and Lee, H. S., 1994, “Monte Carlo Solutions for Radiative Heat Transfer in Irregular Two-Dimensional Geometries,” Radiative Heat Transfer: Current Research, HTD-Vol. 276, ASME, New York, pp. 191–199.
25.
Perlmutter
M.
, and
Howell
J. R.
,
1964
, “
Radiant Transfer Through a Gray Gas Between Concentric Cylinders Using Monte Carlo
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
86
, pp.
169
179
.
26.
Rabl
A.
,
1977
, “
Radiation Transfer Through Specular Passages-A Simple Approximation
,”
Int. J. Heat Mass Transfer
, Vol.
20
, pp.
323
330
.
27.
Sarofim
A. F.
, and
Hottel
H. C
,
1966
, “
Radiative Exchange Among Non-Lambert Surfaces
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
88
, pp.
37
44
.
28.
Shamsundar
N.
,
Sparrow
E. M.
, and
Heinish
R. P.
,
1972
, “
Monte Carlo Radiation Solutions-Effect of Energy Partitioning and Number of Rays
,”
Int. J. Heat Mass Transfer
, Vol.
16
, pp.
690
694
.
29.
Sivathanu
Y. R.
, and
Gore
J. P.
,
1993
, “
A Discrete Probability Function Method for the Equation of Radiative Transfer
,”
J. Quant. Spec. & Rad. Trans.
, Vol.
49
, pp.
269
280
.
30.
Sivathanu, Y. R., and Gore, J. P., 1994, “A Discrete Probability Function Method for Radiation in Enclosures and Comparison with the Monte Carlo Method,” Radiative Heat Transfer: Current Research, HTD-Vol. 276, ASME, New York, pp. 213–218.
31.
Sivathanu
Y. R.
,
Gore
J. P.
, and
Dolinar
J.
,
1991
, “
Transient Scalar Properties of Strongly Radiating Jet Flames
,”
Combust. Sci. & Tech.
, Vol.
76
, pp.
45
66
.
32.
Sparrow
E. M.
,
Gregg
J. L.
,
Szel
J. V.
, and
Manos
P.
,
1961
, “
Analysis, Results, and Interpretation for Radiation Between Simply Arranged Gray Surfaces
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
83
, pp.
217
214
.
33.
Sparrow
E. M.
,
Eckert
E. R. G.
, and
Jonsson
V. K.
,
1962
, “
An Enclosure Theory for Radiative Exchange Between Specularly and Diffusely Reflecting Surfaces
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
84
, pp.
294
300
.
34.
Tong, T. W., and Skocypec, D. R., 1992, “Summary on Comparison of Radiative Heat Transfer Solutions for a Specified Problem,” ASME HTD-Vol. 203, pp. 253–264.
35.
Toor
J. S.
, and
Viskanta
R.
,
1968
, “
A Numerical Experiment of Radiant Heat Interchange by the Monte Carlo Method
,”
Int. J. Heat Mass Transfer
, Vol.
11
, pp.
883
897
.
This content is only available via PDF.
You do not currently have access to this content.