Detailed heat transfer coefficient distributions on a turbine blade under the combined effects of trailing edge jets and unsteady wakes at various free-stream conditions are presented using a transient liquid crystal image method. The exit Reynolds number based on the blade axial chord is varied from 5.3 × 105 to 7.6 × 105 for a five blade linear cascade in a low speed wind tunnel. Unsteady wakes are produced using a spoked wheel-type wake generator upstream of the linear cascade. Upstream trailing edge jets are simulated by air ejection from holes located on the hollow spokes of the wake generator. The mass flux ratio of the jets to free-stream is varied from 0.0 to 1.0. Results show that the surface heat transfer coefficient increases with an increase in Reynolds number and also increases with the addition of unsteady wakes. Adding grid generated turbulence to the unsteady wake further enhances the blade surface heat transfer coefficients. The trailing edge jets compensate the defect in the velocity profile caused by the unsteady passing wakes and give an increase in free-stream velocity and produce a more uniformly disturbed turbulence intensity profile. The net effect is to increase both the front parts of blade suction and pressure surface heat transfer. However, the jet effect diminishes in and after the transition regions on suction surface, or far away from the leading edge on pressure surface.

1.
Abhari
 
R. S.
,
Guenette
 
G. R.
,
Epstein
 
A. H.
, and
Giles
 
M. B.
,
1992
, “
Comparison of Time-Resolved Measurements and Numerical Calculations
,”
ASME Journal of Turbomachinery
, Vol.
114
, pp.
818
827
.
2.
Ashworth
 
D. A.
,
LaGraff
 
J. E.
,
Schultz
 
D. L.
, and
Grindrod
 
K. J.
,
1985
, “
Unsteady Aerodynamic and Heat Transfer Processes in a Transonic Turbine Stage
,”
ASME Journal of Engineering for Gas Turbines and Power
, Vol.
107
, pp.
1022
1030
.
3.
Blair
 
M. F.
,
1994
, “
An Experimental Study of Heat Transfer in a Large-Scale Turbine Rotor Passage
,”
ASME Journal of Turbomachinery
, Vol.
116
, pp.
1
13
.
4.
Blair
 
M. F.
,
Dring
 
R. P.
, and
Joslyn
 
H. D.
,
1989
, “
The Effects of Turbulence and Stator/Rotor Interactions on Turbine Heat Transfer: Part I—Design Operating Conditions; Part II—Effects of Reynolds Number and Incidence
,”
ASME Journal of Turbomachinery
, Vol.
111
, pp.
87
103
.
5.
Doorly
 
D. J.
,
1988
, “
Modeling the Unsteady Flow in a Turbine Rotor Passage
,”
ASME Journal of Turbomachinery
, Vol.
110
, pp.
27
37
.
6.
Doorly
 
D. J.
, and
Oldfield
 
M. L. G.
,
1985
, “
Simulation of the Effects of Shock-Waves Passing on a Turbine Rotor Blade
,”
ASME Journal of Engineering for Gas Turbines and Power
, Vol.
107
, pp.
998
1006
.
7.
Dullenkopf
 
K.
, and
Mayle
 
R. E.
,
1994
, “
The Effect of Incident Turbulence and Moving Wakes on Laminar Heat Transfer in Gas Turbines
,”
ASME Journal of Turbomachinery
, Vol.
116
, pp.
23
28
.
8.
Dullenkopf
 
K.
,
Schulz
 
A.
, and
Wittig
 
S.
,
1991
, “
The Effect of Incident Wake Conditions on the Mean Heat Transfer on an Airfoil
,”
ASME Journal of Turbomachinery
, Vol.
113
, pp.
412
418
.
9.
Dunn
 
M. G.
,
1986
, “
Heat Flux Measurements for the Rotor of a Full-Stage Turbine: Part I—Time Averaged Results
,”
ASME Journal of Turbomachinery
, Vol.
108
, pp.
90
97
.
10.
Dunn
 
M. G.
,
Kim
 
J.
,
Civiskas
 
K. C.
, and
Boyle
 
R. J.
,
1994
, “
Time-Averaged Heat Transfer and Pressure Measurements and Comparison with Prediction for a Two-Stage Turbine
,”
ASME Journal of Turbomachinery
, Vol.
116
, pp.
14
22
.
11.
Dunn
 
M. G.
,
Seymour
 
P. J.
,
Woodward
 
S. H.
,
George
 
W. K.
, and
Chupp
 
R. E.
,
1989
, “
Phase-Resolved Heat Flux Measurements on the Blade of a Full-Scale Rotating Turbine
,”
ASME Journal of Turbomachinery
, Vol.
111
, pp.
8
19
.
12.
Han
 
J. C.
,
Zhang
 
L.
, and
Ou
 
S.
,
1993
, “
Influence of Unsteady Wake on Heat Transfer Coefficient From a Gas Turbine Blade
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
115
, pp.
904
911
.
13.
Hippensteele
 
S. A.
,
Russell
 
L. M.
, and
Stepka
 
F. S.
,
1983
, “
Evaluation of a Method for Heat Transfer Measurements and Thermal Visualization Using a Composite of a Heater Element and Liquid Crystals
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
105
, pp.
184
189
.
14.
Hoffs
 
A.
,
Bolcs
, and
Harsagama
 
S. P.
,
1997
, “
Transient Heat Transfer Experiments in a Linear Cascade via an Insertion Mechanism Using the Liquid Crystal Technique
,”
ASME Journal of Turbomachinery
, Vol.
119
, pp.
9
13
.
15.
Kline
 
S. J.
, and
McClintock
 
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mechanical Engineering
, Vol.
75
, Jan., pp.
3
8
.
16.
Liu, X., and Rodi, W., 1992, “Measurements of Unsteady Flow and Heat Transfer in a Linear Turbine Cascade,” ASME Paper No. 92-GT-323.
17.
Martinez-Botas
 
R. F.
,
Lock
 
G. D.
, and
Jones
 
T. V.
,
1995
, “
Heat Transfer Measurements in an Annular Cascade of Transonic Gas Turbine Blades Using a Transient Liquid Crystal Technique
,”
ASME Journal of Turbomachinery
, Vol.
117
, pp.
425
431
.
18.
O’Brien
 
J. E.
, and
Capp
 
S. P.
,
1989
, “
Two-Component Phase-Averaged Turbulence Statistics Downstream of a Rotating Spoked-Wheel Wake Generator
,”
ASME Journal of Turbomachinery
, Vol.
111
, pp.
475
482
.
19.
Ou
 
S.
,
Han
 
J. C.
,
Mehendale
 
A. B.
, and
Lee
 
C. P.
,
1994
, “
Unsteady Wake Over a Linear Turbine Cascade With Air and CO2 Film Injection: Part I—Effect on Heat Transfer Coefficients
,”
ASME Journal of Turbomachinery
, Vol.
116
, No.
4
, pp.
721
729
.
20.
Wittig
 
S.
,
Dullenkopf
 
K.
,
Schulz
 
A.
, and
Hestermann
 
R.
,
1987
, “
Laser-Doppler Studies of the Wake-Effected Flow Field in a Turbine Cascade
,”
ASME Journal of Turbomachinery
, Vol.
109
, pp.
170
176
.
21.
Zhang
 
L.
, and
Han
 
J. C.
,
1995
, “
Combined Effect of Free-Stream Turbulence and Unsteady Wake on Heat Transfer Coefficients from a Gas Turbine Blade
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
117
, pp.
296
302
.
This content is only available via PDF.
You do not currently have access to this content.