Chemical-vapor-deposited diamond layers of thickness between 0.1 and 5 μm have the potential to improve conduction cooling in electronic microstructures. However, thermal conduction in these layers is strongly impeded by phonon scattering on defects, whose concentrations can be highly nonhomogeneous, and on layer boundaries. By assuming that defects are concentrated near grain boundaries, this work relates the internal phonon scattering rate to the local characteristic grain dimension and to the dimensionless grain-boundary scattering strength, a parameter defined here that varies little within a given layer. Solutions to the Peierls–Boltzmann phonon transport equation for conduction along and normal to layers account for the nonhomogeneous internal scattering rate. Predictions for conduction along and normal to layers as thin as 0.2 μm agree well with room-temperature data. This research helps optimize diamond layer thicknesses for specific microstructures, such as silicon-on-diamond (SOD) circuits.

1.
Annamalai, N. K., Sawyer, J., Karulkar, P., Masyara, W., and Landstrass, M., 1993, “Silicon-on-Diamond Field-Effect Devices,” Proceedings of the 3rd IUMRS International Conference on Advanced Materials, Tokyo, Japan, Aug. 31–Sept. 4.
2.
Berman, R., 1976, Thermal Conduction in Solids, Oxford University Press, Oxford, United Kingdom, p. 23.
3.
Brewster, M. Q., 1992, Thermal Radiative Transfer and Properties, Wiley, New York, Chap. 11, p. 232.
4.
Chen
G.
, and
Tien
C. L.
,
1993
, “
Thermal Conductivity of Quantum-Well Structures
,”
J. Thermophysics and Heat Transfer
, Vol.
7
, pp.
311
318
.
5.
Flik
M. I.
,
Choi
B. I.
, and
Goodson
K. E.
,
1992
, “
Heat Transfer Regimes in Microstructures
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
114
, pp.
666
674
.
6.
Fuchs, K., 1938, “The Conductivity of Thin Metallic Films According to the Electron Theory of Metals,” Proc. Cambridge Phil Soc., Vol. 34, pp. 100–108.
7.
Goodson
K. E.
,
Flik
M. I.
,
Su
L. T.
, and
Antoniadis
D. A.
,
1994
a, “
Prediction and Measurement of the Thermal Conductivity of Amorphous Dielectric Layers
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
116
, pp.
317
324
.
8.
Goodson, K. E., Ka¨ding, O. W., and Zachai, R., 1994b, “Thermal Resistances at the Boundaries of CVD Diamond Layers in Electronic Systems,” presented at the ASME Winter Annual Meeting, Chicago, IL, Nov. 11–18.
9.
Goodson
K. E.
,
1995
, “
Impact of CVD Diamond Layers on the Thermal Engineering of Electronic Systems
,”
Annual Review of Heat Transfer
, Vol.
VI
, Begell House, New York, pp.
323
353
.
10.
Goodson
K. E.
,
Flik
M. I.
,
Su
L. T.
, and
Antoniadis
D. A.
,
1995
a, “
Prediction and Measurement of Temperature Fields in Silicon-on-Insulator Electronic Circuits
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
117
, pp.
574
581
.
11.
Goodson
K. E.
,
Ka¨ding
O. W.
,
Ro¨sler
M.
, and
Zachai
R.
,
1995
b, “
Experimental Investigation of Thermal Conduction Normal to Diamond-Silicon Boundaries
,”
J. Appl. Phys.
, Vol.
77
, pp.
1385
1392
.
12.
Goodson, K. E., Kurabayashi, K., and Pease, R. F. W., 1995c, “Improved Heat Sinking for Laser-Diode Arrays Using Microchannels in CVD Diamond,” Proceedings of the ASME National Heat Transfer Conference, Portland, OR, Aug. 5–9, S. S. Sadhal et al., eds., Vol. 3, pp. 187–192.
13.
Graebner
J. E.
,
Jin
S.
,
Kammlott
G. W.
,
Herb
J. A.
, and
Gardinier
C. F.
,
1992
a, “
Unusually High Thermal Conductivity in Diamond Films
,”
Appl. Phys. Lett.
, Vol.
60
, pp.
1576
1578
.
14.
Graebner
J. E.
,
Mucha
J. A.
,
Seibles
L.
, and
Kammlott
G. W.
,
1992
b, “
The Thermal Conductivity of Chemical-Vapor-Deposited Diamond Films on Silicon
,”
J. Appl. Phys.
, Vol.
71
, pp.
3143
3146
.
15.
Graebner
J. E.
,
1993
, “
Thermal Conductivity of CVD Diamond: Techniques and Results
,”
Diamond Films and Technology
, Vol.
3
, pp.
77
130
.
16.
Heatherington
A. V.
,
Wort
C. J. H.
, and
Southworth
P.
,
1990
, “
Crystalline Perfection of Chemical Vapor Deposited Diamond Films
,”
J. Materials Research
, Vol.
5
, pp.
1591
1594
.
17.
Joshi
A. A.
, and
Majumdar
A.
,
1993
, “
Transient Ballistic and Diffusive Phonon Heat Transport in Thin Films
,”
J. Appl. Phys.
, Vol.
74
, pp.
31
39
.
18.
Ka¨ding
O. W.
,
Matthias
E.
,
Zachai
R.
,
Fu¨Ber
H. J.
, and
Mu¨nziger
P.
,
1993
, “
Thermal Diffusivities of Thin Diamond Films on Silicon
,”
Diamond and Related Materials
, Vol.
2
, pp.
1185
1190
.
19.
Ka¨ding
O. W.
,
Ro¨sler
M.
,
Zachai
R.
, and
Fu¨Ber
H.-J.
,
1994
, “
Lateral Thermal Diffusivity of Epitaxial Diamond Films
,”
Diamond and Related Materials
, Vol.
3
, pp.
1175
1182
.
20.
Majumdar
A.
,
1993
, “
Microscale Heat Conduction in Dielectric Thin Films
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
115
, p.
7
7
.
21.
Morelli
D. T.
,
Uher
C.
, and
Robinson
C. J.
,
1993
, “
Transmission of Phonons Through Grain Boundaries in Diamond Films
,”
Appl. Phys. Lett.
, Vol.
62
, pp.
1085
1087
.
22.
Peierls, R. E., 1955, Quantum Theory of Solids, Oxford University Press, New York, Chaps. 1 and 2.
23.
Plamann
K.
,
Fournier
D.
,
Anger
E.
, and
Gicquel
A.
,
1994
, “
Photothermal Examination of the Heat Diffusion Inhomogeneity in Diamond Films of Submicron Thickness
,”
Diamond and Related Materials
, Vol.
3
, pp.
752
756
.
24.
Ravi, K. V., and Landstrass, M. I., 1989, “Silicon on Insulator Technology Using CVD Diamond,” Proceedings of the First International Symposium on Diamond and Diamond-Like Films, J. P. Dismukes et al., eds., The Electrochemical Society, Pennington, NJ, pp. 24–37.
25.
Ro¨sler, M., Zachai, R., Fu¨ßer, H.-J., Jiang, X., and Klages, C.-P., 1993, “Structural Properties of Heteroepitaxial Diamond on Silicon,” Proceedings of the 2nd International Conference on the Applications of Diamond Films and Related Materials, M. Yoshikawa et al., eds., MYU Press, Tokyo, Japan, pp. 691–696.
26.
Sondheimer
E. H.
,
1952
, “
The Mean Free Path of Electrons in Metals
,”
Advances in Physics
, Vol.
1
, pp.
1
42
.
27.
Stoner
B. R.
,
Ma
G.-H. M.
,
Wolter
S. D.
, and
Glass
J. T.
,
1992
, “
Characterization of Bias-Enhanced Nucleation of Diamond on Silicon by in Vacuo Surface Analysis and Transmission Electron Microscopy
,”
Phys. Rev. B
, Vol.
45
, pp.
11067
11084
.
28.
Swartz
E. T.
, and
Pohl
R. O.
,
1989
, “
Thermal Boundary Resistance
,”
Rev. Mod. Phys.
, Vol.
61
, pp.
605
668
.
This content is only available via PDF.
You do not currently have access to this content.