An analytical investigation was conducted to determine the rewetting characteristics of thin, surface tension driven liquid films over heated plates as a function of the fluid properties, the film thickness, and the applied heat flux. Analytical expressions for the maximum sustainable heat flux and the rewetting velocity were developed for both flat and grooved plates and were compared with data from previous investigations. The results indicated good agreement for low film velocities; however, at high velocities the experimental data deviated significantly from the theoretical predictions. It was hypothesized that this deviation was due to the presence of liquid sputtering near the liquid front. To compensate for this liquid sputtering, the expressions for maximum sustainable heat flux and rewetting velocity were modified using an empirical correction factor developed from the data of previous thin film thickness investigations. The resulting modified expressions were found to compare very favorably with available experimental data over a large range of flow conditions and velocities.

This content is only available via PDF.
You do not currently have access to this content.