The flow structure and average heat transfer characteristics of single, isolated three-dimensional protrusions in a flow channel have been investigated experimentally. This configuration has relevance in the electronics industry. The study was designed to identify the influence of the three-dimensional flow around a heated protrusion on its average heat transfer. Heated protrusions varying in width between 0.12 and 1.0 channel widths for a fixed protrusion height and streamwise length were studied in the channel Reynolds number range 500≤Re≤10,000. The channel wall spacing was also varied parametrically between 1.25 and 2.5 streamwise protrusion lengths. The study included both average heat transfer measurements, and detailed local velocity and turbulent flow structure measurements made using laser-Doppler velocimetry. The experimental results show that the Nusselt number increases with both decreasing channel wall spacing and decreasing protrusion width. The increase in heat transfer with decreasing wall spacing is explained by the accelerated flow due to the protrusion-obstructed channel. Increasing Nusselt number with decreasing protrusion width is a result of increased three-dimensional flow and associated turbulent mixing. Both of these flow-related phenomena are illustrated with local mean velocity and turbulence intensity measurements. The presence of recirculation zones both upstream and downstream of the module is revealed. The flow acceleration around the heated protrusions, and three dimensionality of the flow and heat transfer are competing mechanisms; the higher heat transfer due to flow acceleration around the protrusions for larger protrusions goes counter to the trend for higher heat transfer due to increased three-dimensional flow and transport for smaller protrusions. A Nusselt number correlation is developed as a function of channel Reynolds number and protrusion and channel geometric parameters, which describes the tradeoffs discussed.

This content is only available via PDF.
You do not currently have access to this content.