Abstract

The use of lubricated free end platens in triaxial testing to promote uniform deformation of the test specimen has a history dating back to the work of D.W. Taylor and others in the 1950s and 1960s, as documented by Rowe and Barden. The performance of critical state triaxial testing programs has become standard industry practice for defining the critical state line (CSL) for silts, sands, and mine tailings to support static liquefaction assessments using a critical state soil mechanics framework. In current practice, the use of free ends is most often combined with the use of a traditional specimen height-to-diameter ratio of 2:1. This paper investigates the effect of the original recommendation of Rowe and Barden, for the use of a 1:1 height-to-diameter ratio in combination with free ends, on the determination of the CSL and other constitutive model parameters for a glaciofluvial feldspathic quartz sand.

References

1.
ASTM International.
2016
.
Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density
. ASTM D4254-16. West Conshohocken, PA:
ASTM International
, approved December 27,
2016
. https://doi.org/10.1520/D4254-16
2.
ASTM International.
2019
.
Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table
. ASTM D4253-16e1. West Conshohocken, PA:
ASTM International
, approved November 21,
2019
. https://doi.org/10.1520/D4253-16E01
3.
ASTM International.
2020
.
Standard Test Method for Consolidated Drained Triaxial Compression Test for Soils
. ASTM D7181-20. West Conshohocken, PA:
ASTM International
, approved February 11,
2020
. https://doi.org/10.1520/D7181-20
4.
ASTM International.
2021
.
Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis
. ASTM D7928-21e1. West Conshohocken, PA:
ASTM International
, approved June 10,
2021
. https://doi.org/10.1520/D7928-21E01
5.
ASTM International.
2021
.
Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis
. ASTM D6913/D6913M-17. West Conshohocken, PA:
ASTM International
, approved February 15,
2021
. https://doi.org/10.1520/D6913_D6913M-17
6.
ASTM International.
2023
.
Standard Test Methods for Specific Gravity of Soil Solids by the Water Displacement Method
. ASTM D854-23. West Conshohocken, PA:
ASTM International
, approved November 23,
2023
. https://doi.org/10.1520/D0854-23
7.
Bishop
,
A. W.
and
Green
G. E.
.
1965
. “
The Influence of End Restraint on the Compression Strength of Cohesionless Soil
.”
Geotechnique
15
, no. 
3
(September):
243
266
. https://doi.org/10.1680/geot.1965.15.3.243
8.
Bishop
A. W.
and
Henkel
D. J.
.
1957
. “
General Remarks on the Advantages and Limitations of the Triaxial Test
.” In
The Measurement of Soil Properties in the Triaxial Test
.
26
32
. London:
William Arnold
.
9.
Bobei
,
D. C.
,
Lo
S. R.
,
Wanatowski
D.
,
Gnanendran
C. T.
, and
Rahman
M. M.
.
2009
. “
Modified State Parameter for Characterizing Static Liquefaction of Sand with Fines
.”
Canadian Geotechnical Journal
46
, no. 
3
(March):
281
295
. https://doi.org/10.1139/T08-122
10.
Chu
,
J.
,
Lo
S. C.
, and
Lee
I. K.
.
1993
. “
Instability of Granular Soils under Strain Path Testing
.”
Journal of Geotechnical Engineering
119
, no. 
5
(May):
874
892
. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:5(874)
11.
El-Sohby
,
M. A.
The Behaviour of Particulate Materials under Stress
.” PhD diss.,
University of Manchester
,
1964
.
12.
Feda
,
J.
,
Bohac
J.
, and
Herle
I.
.
1993
. “
End Restraint in Triaxial Testing of Soils
.”
Acta Technica
38
:
197
220
.
13.
Fotovvat
,
A.
and
Sadrekarimi
A.
.
2022
. “
Instability of Gold Mine Tailings Subjected to Different Stress Paths
.”
Journal of Geotechnical and Geoenvironmental Engineering
148
, no. 
5
(May): 04022020. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002780
14.
Jefferies
M. J.
and
Been
K.
.
2016
.
Soil Liquefaction: A Critical State Approach
, 2nd ed.
Boca Raton, FL
:
CRC Press
.
15.
Jefferies
,
M. G.
and
Shuttle
D. A.
.
2002
. “
Dilatancy in General Cambridge-Type Models
.”
Géotechnique
52
, no. 
9
(November):
625
638
. https://doi.org/10.1680/geot.2002.52.9.625
16.
Ladd
,
R. S.
1978
. “
Preparing Test Specimens Using Undercompaction
.”
Geotechnical Testing Journal
1
, no. 
1
(March):
16
23
. https://doi.org/10.1520/GTJ10364J
17.
Lee
,
I. K.
1966
. “
Stress-Dilatancy Performance of Feldspar
.”
Journal of the Soil Mechanics and Foundations Division
92
, no. 
2
(March):
79
103
. https://doi.org/10.1061/JSFEAQ.0000868
18.
Lee
,
K. L.
and
Seed
H. B.
.
1967
. “
Drained Strength Characteristics of Sands
.”
Journal of the Soil Mechanics and Foundations Division
93
, no. 
6
(November):
117
141
. https://doi.org/10.1061/JSFEAQ.0001048
19.
Manzari
,
M.
and
Dafalias
Y. F.
.
1997
. “
A Critical State Two-Surface Plasticity Model for Sands
.”
Géotechnique
47
, no. 
2
(April):
255
272
. https://doi.org/10.1680/geot.1997.47.2.255
20.
Nova
,
R.
1982
. “
A Constitutive Model under Monotonic and Cyclic Loading.
” In
Soil Mechanics - Transient and Cyclic Loads
, edited by
Pande
G. N.
and
Zienkiewicz
O. C.
,
343
373
. Chichester, UK:
Wiley
.
21.
Omar
,
T.
and
Sadrekarimi
A.
. n.d “
Scale Effect on Shear Behaviour of Loose Sand in Triaxial Testing and Its Implication in Engineering Design and Analysis
.”
Paper presented at the 67th Canadian Geotechnical Conference GeoRegina
, Regina, SK, September
2014
.
22.
Rabbi
,
A. T. M. Z.
,
Rahman
M. M.
, and
Cameron
D. A.
. n.d “
Undrained Behaviour of Silty Glacial Sand under K0-Consolidation
.”
Paper presented at Sixth International Conference on Earthquake Geotechnical Engineering
, Christchurch, New Zealand, November
2015
.
23.
Rahman
,
M. M.
and
Lo
S. R.
.
2014
. “
Undrained Behavior of Sand-Fines Mixtures and Their State Parameter
.”
Journal of Geotechnical and Geoenvironmental Engineering
140
, no. 
7
(July): 04014036. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001115
24.
Rahman
,
M. M.
,
Nguyen
H.
, and
Rabbi
Z.
. n.d “
Undrained Behaviour of Sand under Isotropic and K0-Consolidated Condition: Experimental and DEM Approach
.”
Paper presented at the 19th International Conference on Soil Mechanics and Geotechnical Engineering
, Seoul, South Korea, September
2017
.
25.
Reid
,
D.
,
Fourie
A.
,
Ayala
J. L.
,
Dickinson
S.
,
Ochoa-Cornejo
F.
,
Fanni
R.
,
Garfias
J.
, et al.
2021
. “
Results of a Critical State Line Testing Round Robin Programme
.”
Géotechnique
71
, no. 
7
(July):
616
630
. https://doi.org/10.1680/jgeot.19.P.373
26.
Rowe
,
P. W.
and
Barden
L.
,
1964
. “
Importance of Free Ends in Triaxial Testing
.”
Journal of the Soil Mechanics and Foundations Division
90
, no. 
1
(January):
1
27
. https://doi.org/10.1061/JSFEAQ.0000586
27.
Schanz
,
T.
and
Vermeer
P. A.
.
1996
. “
Angles of Friction and Dilatancy of Sand
.”
Géotechnique
46
, no. 
1
(March):
145
151
. https://doi.org/10.1680/geot.1996.46.1.145
28.
Shockley
,
W. G.
and
Ahlvin
R. G.
. n.d “
Nonuniform Conditions in Triaxial Compression Test Specimens
.”
Paper presented at the Research Conference on Shear Strength of Cohesive Soils
, Boulder, CO, June
1960
.
29.
Taylor
,
D. W.
1941
.
Seventh Progress Report on Shear Research to US Engineers
.
Cambridge, MA
:
MIT Publication
.
30.
Vinck
,
K.
,
Liu
T.
,
Ushev
E.
, and
Jardine
R. J.
. n.d “
An Appraisal of End Conditions in Advanced Monotonic and Cyclic Triaxial Testing on a Range of Geomaterials
.” Paper presented at Seventh International Symposium on Deformation Characteristics of Geomaterials (IS-Glasgow
2019
), Glasgow, UK, June 2019.
31.
Wong
,
R. C.
1999
. “
Mobilized Strength Components of Athabasca Oil Sand in Triaxial Compression
.”
Canadian Geotechnical Journal
36
, no. 
4
(November):
718
735
. https://doi.org/10.1139/t99-040
32.
Yamamuro
,
J. A.
and
Lade
P. V.
.
1998
. “
Steady-State Concepts and Static Liquefaction of Silty Sands
.”
Journal of Geotechnical and Geoenvironmental Engineering
124
, no. 
9
(November):
868
877
. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:9(868)
33.
Yu
,
H. S.
1998
. “
CASM: A Unified State Parameter Model for Clay and Sand
.”
International Journal for Numerical and Analytical Methods in Geomechanics
22
, no. 
8
(December):
621
653
. https://doi.org/10.1002/(SICI)1096-9853(199808)22:8%3C621::AID-NAG937%3E3.0.CO;2-8
34.
Zhang
,
J.
,
Lo
S. C. R.
,
Rahman
M. M.
, and
Yan
J.
.
2018
. “
Characterizing Monotonic Behavior of Pond Ash within Critical State Approach
.”
Journal of Geotechnical and Geoenvironmental Engineering
144
, no. 
1
(January): 04017100. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001798
This content is only available via PDF.
You do not currently have access to this content.