Abstract

A key consideration in physical modeling of seismic problems in geotechnical engineering is the impact of the model container boundaries on the soil layer response. The container boundaries may alter the stress-strain behavior from free-field conditions through the possible reflection of incident shear waves and generation of P-waves within the soil layers. In this study, 1-g shaking table experiments were performed to evaluate the impacts of container boundary conditions on the response of saturated loose sand layers subjected to harmonic base motions (1) in a free-field condition, (2) with a shallow foundation, and (3) with a shallow foundation supporting a single degree of freedom superstructure. The sand layers were formed in a newly fabricated laminar shear container that can be converted to a rigid box by adding elements to the end walls. Acceleration, excess pore water pressure, and settlement measurements demonstrate that the rigidity of the container boundaries can have a major impact on seismic behavior of the models. In particular, the observed permanent settlement of the foundations increased by 58–115 % in the soil models with fixed-end (or rigid) boundaries compared with those in soil models with flexible conditions. This was attributed to nonuniformity of strains near the fixed-end container boundaries and a higher level of energy trapped inside the model. Furthermore, higher spectral accelerations were captured in tests with fixed-end boundary conditions compared with those with flexible boundary conditions. Scaling issues associated with 1-g shaking table testing were also discussed.

References

1.
Acacio
,
A. A.
,
Kobayashi
Y.
,
Towhata
I.
,
Bautista
R. T.
, and
Ishihara
K.
.
2001
. “
Subsidence of Building Foundation Resting upon Liquefied Subsoil: Case Studies and Assessment
.”
Soils and Foundations
41
, no. 
6
(December):
111
128
. https://doi.org/10.3208/sandf.41.6_111
2.
Adalier
,
K.
,
Elgamal
A.
,
Meneses
J.
, and
Baez
J. I.
.
2003
. “
Stone Columns as Liquefaction Countermeasure in Non-plastic Silty Soils
.”
Soil Dynamics and Earthquake Engineering
23
, no. 
7
(October):
571
584
. https://doi.org/10.1016/S0267-7261(03)00070-8
3.
Alam
,
M. J.
and
Towhata
I.
.
2008
. “
Some Important Aspects of Physical Modelling of Liquefaction in 1‐g Shaking Table
.”
AIP Conference Proceedings
1020
, no. 
1
:
419
425
. https://doi.org/10.1063/1.2963865
4.
Bertalot
,
D.
,
Brennan
A. J.
, and
Villalobos
F. A.
.
2013
. “
Influence of Bearing Pressure on Liquefaction-Induced Settlement of Shallow Foundations
.”
Géotechnique
63
, no. 
5
(April):
391
399
. https://doi.org/10.1680/geot.11.P.040
5.
Bird
,
J. F.
,
Bommer
J. J.
,
Bray
J. D.
,
Sancio
R.
, and
Spence
R. J. S.
.
2004
. “
Comparing Loss Estimation with Observed Damage in a Zone of Ground Failure: A Study of the 1999 Kocaeli Earthquake in Turkey
.”
Bulletin of Earthquake Engineering
2
, no. 
3
:
329
360
. https://doi.org/10.1007/s10518-004-3804-0
6.
Bishop
,
A. W.
,
Green
G. E.
,
Garga
V. K.
,
Andresen
A.
, and
Brown
J. D.
.
1971
. “
A New Ring Shear Apparatus and Its Application to the Measurement of Residual Strength
.”
Géotechnique
21
, no. 
4
(December):
273
328
. https://doi.org/10.1680/geot.1971.21.4.273
7.
Bray
,
J.
,
Cubrinovski
M.
,
Zupan
J.
, and
Taylor
M.
.
2014
. “
Liquefaction Effects on Buildings in the Central Business District of Christchurch
.”
Earthquake Spectra
30
, no. 
1
:
85
109
. https://doi.org/10.1193/022113EQS043M
8.
Bray
,
J. D.
and
Dashti
S.
.
2014
. “
Liquefaction-Induced Building Movements
.”
Bulletin of Earthquake Engineering
12
, no. 
3
(June):
1129
1156
. https://doi.org/10.1007/s10518-014-9619-8
9.
Bray
,
J. D.
and
Luque
R.
.
2017
. “
Seismic Performance of a Building Affected by Moderate Liquefaction during the Christchurch Earthquake
.”
Soil Dynamics and Earthquake Engineering
102
(November):
99
111
. https://doi.org/10.1016/j.soildyn.2017.08.011
10.
Bray
,
J. D.
,
Stewart
J. P.
,
Baturay
M. B.
,
Durgunoglu
T.
,
Onalp
A.
,
Sancio
R. B.
,
Stewart
J. P.
,
Ural
D.
,
Ansal
A.
,
Bardet
J. B.
, and
Barka
A.
.
2000
. “
Damage Patterns and Foundation Performance in Adapazari
.”
Earthquake Spectra
16
, no. 
1
, suppl.:
163
189
. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002002
11.
Dashti
,
S.
,
Bray
J. D.
,
Pestana
J. M.
,
Riemer
M.
, and
Wilson
D.
.
2010
a. “
Centrifuge Testing to Evaluate and Mitigate Liquefaction-Induced Building Settlement Mechanisms
.”
Journal of Geotechnical and Geoenvironmental Engineering
136
, no. 
7
(July):
918
929
. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000306
12.
Dashti
,
S.
,
Bray
J. D.
,
Pestana
J. M.
,
Riemer
M.
, and
Wilson
D.
.
2010
b. “
Mechanisms of Seismically Induced Settlement of Buildings with Shallow Foundations on Liquefiable Soil
.”
Journal of Geotechnical and Geoenvironmental Engineering
136
, no. 
1
(January):
151
164
. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000179
13.
Ecemis
,
N.
2013
. “
Simulation of Seismic Liquefaction: 1-g Model Testing System and Shaking Table Tests
.”
European Journal of Environmental and Civil Engineering
17
, no. 
10
:
899
919
. https://doi.org/10.1080/19648189.2013.833140
14.
Fiegel
,
G. L.
,
Hudson
M.
,
Idriss
I. M.
, and
Kutter
B. L.
.
1994
. “
Effect of Model Containers on Dynamic Soil Response
.” In
Centrifuge 94: Proceedings of the International Conference Centrifuge 94, Singapore, 31 August - 2 September 1994
,
145
150
. Rotterdam, the Netherlands: A. A. Balkema.
15.
Fishman
,
K. L.
,
Mander
J. B.
, and
Richards Jr
R.
.
1995
. “
Laboratory Study of Seismic Free-Field Response of Sand
.”
Soil Dynamics and Earthquake Engineering
14
, no. 
1
:
33
43
. https://doi.org/10.1016/0267-7261(94)00017-B
16.
Forcellini
,
D.
2019
. “
Numerical Simulations of Liquefaction on an Ordinary Building during Italian (20 May 2012) Earthquake
.”
Bulletin of Earthquake Engineering
17
, no. 
9
(September):
4797
4823
. https://doi.org/10.1007/s10518-019-00666-5
17.
Franke
,
K. W.
,
Candia
G.
,
Mayoral
J. M.
,
Wood
C. M.
,
Montgomery
J.
,
Hutchinson
T.
, and
Morales-Velez
A. C.
.
2019
. “
Observed Building Damage Patterns and Foundation Performance in Mexico City Following the 2017 M7.1 Puebla-Mexico City Earthquake
.”
Soil Dynamics and Earthquake Engineering
125
(October): 105708. https://doi.org/10.1016/j.soildyn.2019.105708
18.
García-Torres
,
S.
and
Madabhushi
G. S. P.
.
2019
. “
Performance of Vertical Drains in Liquefaction Mitigation under Structures
.”
Bulletin of Earthquake Engineering
17
(November):
5849
5866
. https://doi.org/10.1007/s10518-019-00717-x
19.
Ghayoomi
,
M.
,
Dashti
S.
, and
McCartney
J. S.
.
2013
. “
Performance of a Transparent Flexible Shear Beam Container for Geotechnical Centrifuge Modeling of Dynamic Problems
.”
Soil Dynamics and Earthquake Engineering
53
(October):
230
239
. https://doi.org/10.1016/j.soildyn.2013.07.007
20.
Ghayoomi
,
M.
,
Dashti
S.
, and
McCartney
J. S.
.
2014
. “
Closure to ‘Performance of a Transparent Flexible Shear Beam Container for Geotechnical Centrifuge Modelling of Dynamic Problems’ by Ghayoomi M., Dashti S., and McCartney J.S
.”
Soil Dynamics and Earthquake Engineering
67
(December):
363
369
. https://doi.org/10.1016/j.soildyn.2014.02.002
21.
Gibson
,
A. D.
Physical Scale Modeling of Geotechnical Structures at One-G
.” PhD diss., California Institute of Technology,
1997
.
22.
Gibson
,
A. D.
and
Scott
R. F.
.
1995
. “
Comparison of a 1 g and Centrifuge Model Dynamic Liquefaction Test: Preliminary Results
.” In
Earthquake Geotechnical Engineering
,
773–778
. Rotterdam, the Netherlands: A. A. Balkema.
23.
Hayashi
,
K.
,
Fujii
N.
,
Muramatsu
T.
, and
Houjyou
K.
.
1997
. “
Direct Comparison of Gravity Model and Centrifuge Model for the Seismic Problem
”(in Japanese).
Doboku Gakkai Ronbunshu
1997
, no. 
582
:
207
216
. https://doi.org/10.2208/jscej.1997.582_207
24.
Hayden
,
C. P.
,
Zupan
J. D.
,
Bray
J. D.
,
Allmond
J. D.
, and
Kutter
B. L.
.
2015
. “
Centrifuge Tests of Adjacent Mat-Supported Buildings Affected by Liquefaction
.”
Journal of Geotechnical and Geoenvironmental Engineering
141
, no. 
3
(March): 04014118. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001253
25.
Hung
,
W.-Y.
,
Lee
C.-J.
, and
Hu
L.-M.
.
2018
. “
Study of the Effects of Container Boundary and Slope on Soil Liquefaction by Centrifuge Modeling
.”
Soil Dynamics and Earthquake Engineering
113
(October):
682
697
. https://doi.org/10.1016/j.soildyn.2018.02.012
26.
Hushmand
,
B.
,
Scott
R. F.
, and
Crouse
C. B.
.
1988
. “
Centrifuge Liquefaction Tests in a Laminar Box
.”
Géotechnique
38
, no. 
2
(June):
253
262
. https://doi.org/10.1680/geot.1988.38.2.253
27.
Iai
,
S.
1989
. “
Similitude for Shaking Table Tests on Soil-Structure-Fluid Model in 1 g Gravitational Field
.”
Soils and Foundations
29
, no. 
1
(March):
105
118
. https://doi.org/10.3208/sandf1972.29.105
28.
Jafarian
,
Y.
,
Haddad
A.
, and
Mehrzad
B.
.
2017
. “
Load-Settlement Mechanism of Shallow Foundations Rested on Saturated Sand with Upward Seepage
.”
International Journal of Geomechanics
17
, no. 
3
(March): 04016076. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000777
29.
Jafarian
,
Y.
and
Javdanian
H.
.
2020
. “
Dynamic Properties of Calcareous Sand from the Persian Gulf in Comparison with Siliceous Sands Database
.”
International Journal of Civil Engineering
18
(February):
245
249
. https://doi.org/10.1007/s40999-019-00402-9
30.
Jafarian
,
Y.
,
Mehrzad
B.
,
Lee
C. J.
, and
Haddad
A. H.
.
2017
. “
Centrifuge Modeling of Seismic Foundation-Soil-Foundation Interaction on Liquefiable Sand
.”
Soil Dynamics and Earthquake Engineering
97
(June):
184
204
. https://doi.org/10.1016/j.soildyn.2017.03.019
31.
Jafarian
,
Y.
,
Taghavizade
H.
,
Rouhi
S.
,
Shojaemehr
S.
, and
Esmaeilpour
P.
.
2020
. “
Shaking Table Experiments to Evaluate the Boundary Effects on Seismic Response of Saturated and Dry Sands in Level Ground Condition
.”
International Journal of Civil Engineering
18
, no. 
7
(July):
783
795
. https://doi.org/10.1007/s40999-019-00485-4
32.
Jafarian
,
Y.
,
Vakili
R.
,
Abdollahi
A. S.
, and
Baziar
M. H.
.
2014
. “
Simplified Soil Liquefaction Assessment Based on Cumulative Kinetic Energy Density: Attenuation Law and Probabilistic Analysis
.”
International Journal of Geomechanics
14
, no. 
2
(April):
267
281
. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000317
33.
Jafarzadeh
,
F.
n.d. “
Design and Evaluation Concepts of Laminar Shear Box for 1 g Shaking Table Tests
.”
Paper presented at the Thirteen World Conference on Earthquake Engineering
,
Vancouver
,
Canada
, August
1
6
,
2004
.
34.
Kagawa
,
T.
1978
. “
On the Similitude in Model Vibration Tests of Earth-Structures
.”
Proceedings of the Japan Society of Civil Engineers
1978
, no. 
275
:
69
77
. https://doi.org/10.2208/jscej1969.1978.275_69
35.
Karimi
,
Z.
and
Dashti
S.
.
2016
. “
Numerical and Centrifuge Modeling of Seismic Soil-Foundation-Structure Interaction on Liquefiable Ground
.”
Journal of Geotechnical and Geoenvironmental Engineering
142
, no. 
1
(January): 04015061. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001346
36.
Karimi
,
Z.
,
Dashti
S.
,
Bullock
Z.
,
Porter
K.
, and
Liel
A.
.
2018
. “
Key Predictors of Structure Settlement on Liquefiable Ground: A Numerical Parametric Study
.”
Soil Dynamics and Earthquake Engineering
113
(October):
286
308
. https://doi.org/10.1016/j.soildyn.2018.03.001
37.
Kokusho
,
T.
and
Iwatate
T.
.
1979
. “
Scaled Model Tests and Numerical Analyses on Nonlinear Dynamic Response of Soft Grounds
.”
Proceedings of the Japan Society of Civil Engineers
1979
, no. 
285
:
57
67
. https://doi.org/10.2208/jscej1969.1979.285_57
38.
Kumar
,
R.
,
Kasama
K.
, and
Takahashi
A.
.
2020
. “
Reliability Assessment of the Physical Modeling of Liquefaction-Induced Effects on Shallow Foundations Considering Nonuniformity in the Centrifuge Model
.”
Computers and Geotechnics
122
(June): 103558. https://doi.org/10.1016/j.compgeo.2020.103558
39.
Lee
,
C.-J.
,
Wei
Y.-C.
, and
Kuo
Y.-C.
.
2012
. “
Boundary Effects of a Laminar Container in Centrifuge Shaking Table Tests
.”
Soil Dynamics and Earthquake Engineering
34
, no. 
1
(March):
37
51
. https://doi.org/10.1016/j.soildyn.2011.10.011
40.
Li
,
Y.
,
Zheng
S.
,
Luo
W.
,
Cui
J.
, and
Chen
Q.
.
2020
. “
Design and Performance of a Laminar Shear Container for Shaking Table Tests
.”
Soil Dynamics and Earthquake Engineering
135
(August): 106157. https://doi.org/10.1016/j.soildyn.2020.106157
41.
Liu
,
L.
and
Dobry
R.
.
1997
. “
Seismic Response of Shallow Foundation on Liquefiable Sand
.”
Journal of Geotechnical and Geoenvironmental Engineering
123
, no. 
6
(June):
557
567
. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:6(557)
42.
Macedo
,
J.
and
Bray
J. D.
.
2018
. “
Key Trends in Liquefaction-Induced Building Settlement
.”
Journal of Geotechnical and Geoenvironmental Engineering
144
, no. 
11
(November): 04018076. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001951
43.
Maymand
,
P. J.
Shaking Table Scale Model Tests of Nonlinear Soil-Pile-Superstructure Interaction in Soft Clay
.” PhD diss., University of California Berkeley,
1998
.
44.
Mehrzad
,
B.
,
Jafarian
Y.
,
Lee
C. J.
, and
Haddad
A. H.
. 2018. “
Centrifuge Study into the Effect of Liquefaction Extent on Permanent Settlement and Seismic Response of Shallow Foundations
.”
Soils and Foundations
58
, no. 
1
(
2018
):
228
240
. https://doi.org/10.1016/j.sandf.2017.12.006
45.
Okamoto
,
S.
n.d. “
Bearing Capacity of Sandy Soil and Lateral Earth Pressure during Earthquakes
.”
Paper presented at the First World Conference on Earthquake Engineering
,
Berkeley
,
CA
, June
1956
.
46.
Pamuk
,
A.
,
Gallagher
P. M.
, and
Zimmie
T. F.
.
2007
. “
Remediation of Piled Foundations against Lateral Spreading by Passive Site Stabilization Technique
.”
Soil Dynamics and Earthquake Engineering
27
, no. 
9
(September):
864
874
. https://doi.org/10.1016/j.soildyn.2007.01.011
47.
Pane
,
V.
,
Vecchietti
A.
, and
Cecconi
M.
.
2016
. “
A Numerical Study on the Seismic Bearing Capacity of Shallow Foundations
.”
Bulletin of Earthquake Engineering
14
, no. 
11
(November):
2931
2958
. https://doi.org/10.1007/s10518-016-9937-0
48.
Pozo
,
C.
,
Gng
Z.
, and
Askarinejad
A.
.
2016
. “
Evaluation of Soft Boundary Effects (SBE) on the Behavior of a Shallow Foundation
.” In
Third European Conference on Physical Modelling in Geotechnics (EUROFUGE 2016)
,
1
6
.
London
:
International Society for Soil Mechanics and Geotechnical Engineering
.
49.
Prasad
,
S. K.
,
Towhata
I.
,
Chandradhara
I., G. P.
, and
Nanjundaswamy
P.
.
2004
. “
Shaking Table Tests in Earthquake Geotechnical Engineering
.”
Current Science
87
, no. 
10
(November):
1398
1404
. https://www.jstor.org/stable/24109480
50.
Shahnazari
,
H.
,
Jafarian
Y.
,
Tutunchian
M. A.
, and
Rezvani
R.
.
2016
. “
Probabilistic Assessment of Liquefaction Occurrence in Calcareous Fill Materials of Kawaihae Harbor, Hawaii
.”
International Journal of Geomechanics
16
, no. 
6
(December): 05016001. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000621
51.
Shen
,
C. K.
,
Li
X. S.
,
Ng
C. W. W.
,
Van Laak
P. A.
,
Kutter
B. L.
,
Cappel
K.
, and
Tauscher
R. C.
. n.d. “
Development of a Geotechnical Centrifuge in Hong Kong
.”
Paper presented at the International Conference Centrifuge (Centrifuge 98)
, Tokyo, Japan, September
23
25
,
1998
.
52.
Suzuki
,
K.
,
Babasaki
R.
, and
Suzuki
Y.
.
1991
. “
Liquefaction Tests by a Laminar Box in a Centrifuge
.” In
Second International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics
, edited by
Prakash
S.
,
225
228
.
Rolla, MO
:
University of Missouri–Rolla
.
53.
Tabatabaiefar
,
H. R.
2016
. “
Detail Design and Construction Procedure of Laminar Soil Containers for Experimental Shaking Table Tests
.”
International Journal of Geotechnical Engineering
10
, no. 
4
:
328
336
. https://doi.org/10.1080/19386362.2016.1145419
54.
Takahashi
,
A.
,
Takemura
J.
,
Suzuki
A.
, and
Kusakabe
O.
.
2001
. “
Development and Performance of an Active Type Shear Box in a Centrifuge
.”
International Journal of Physical Modelling in Geotechnics
1
, no. 
2
(June):
1
17
. https://doi.org/10.1680/ijpmg.2001.010201
55.
Taucer
,
F.
,
Alarcon
J. E.
, and
So
E.
.
2009
. “
2007 August 15 Magnitude 7.9 Earthquake Near the Coast of Central Peru: Analysis and Field Mission Report
.”
Bulletin of Earthquake Engineering
7
, no. 
1
(February):
1
70
. https://doi.org/10.1007/s10518-008-9092-3
56.
Thevanayagam
,
S.
,
Kanagalingam
T.
,
Reinhorn
A.
,
Tharmendhira
R.
,
Dobry
R.
,
Pitman
M.
,
Abdoun
T.
,
Elgamal
A.
,
Zeghal
M.
,
Ecemis
N.
, and
El Shamy
U.
.
2009
. “
Laminar Box System for 1-g Physical Modeling of Liquefaction and Lateral Spreading
.”
Geotechnical Testing Journal
32
, no. 
5
(September):
438
449
. https://doi.org/10.1520/GTJ102154
57.
Tokimatsu
,
K.
,
Hino
K.
,
Suzuki
H.
,
Ohno
K.
,
Tamura
S.
, and
Suzuki
Y.
.
2019
. “
Liquefaction-Induced Settlement and Tilting of Buildings with Shallow Foundations Based on Field and Laboratory Observation
.”
Soil Dynamics and Earthquake Engineering
124
(September):
268
279
. https://doi.org/10.1016/j.soildyn.2018.04.054
58.
Tokimatsu
,
K.
,
Kojima
H.
,
Kuwayama
S.
,
Abe
A.
, and
Midorikawa
S.
.
1994
. “
Liquefaction-Induced Damage to Buildings in 1990 Luzon Earthquake
.”
Journal of Geotechnical Engineering
120
, no. 
2
(February):
290
307
. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:2(290)
59.
Tokimatsu
,
K.
,
Tamura
S.
,
Suzuki
H.
, and
Katsumata
K.
.
2012
. “
Building Damage Associated with Geotechnical Problems in the 2011 Tohoku Pacific Earthquake
.”
Soils and Foundations
52
, no. 
5
(October):
956
974
. https://doi.org/10.1016/j.sandf.2012.11.014
60.
Toyota
,
H.
,
Towhata
I.
,
Imamura
S.
, and
Kudo
K.
.
2004
. “
Shaking Table Tests on Flow Dynamics in Liquefied Slope
.”
Soils and Foundations
44
, no. 
5
(October):
67
84
. https://doi.org/10.3208/sandf.44.5_67
61.
Turan
,
A.
,
Hinchberger
S. D.
, and
El Naggar
H.
.
2009
. “
Design and Commissioning of a Laminar Soil Container for Use on Small Shaking Tables
.”
Soil Dynamics and Earthquake Engineering
29
, no. 
2
(February):
404
414
. https://doi.org/10.1016/j.soildyn.2008.04.003
62.
Ueng
,
T.-S.
,
Wang
M.-H.
,
Chen
M.-H.
,
Chen
C.-H.
, and
Peng
L.-H.
.
2006
. “
A Large Biaxial Shear Box for Shaking Table Test on Saturated Sand
.”
Geotechnical Testing Journal
29
, no. 
1
(January):
1
8
. https://doi.org/10.1520/GTJ12649
63.
Van Laak
,
P. A.
,
Taboada
V. M.
,
Dobry
R.
, and
Elgamal
A.-W.
.
1994
. “
Earthquake Centrifuge Modeling Using a Laminar Box
.” In
Dynamic Geotechnical Testing II
, edited by
Ebelhar
R.
,
Drnevich
V.
, and
Kutter
B.
,
370
384
.
West Conshohocken, PA
:
ASTM International
. https://doi.org/10.1520/STP13225S
64.
Vargas-Monge
,
W.
“Ring Shear Tests on Large Deformation of Sand.” PhD diss., University of Tokyo,
1998
.
65.
Whitman
,
R. V.
and
Lambe
P. C.
.
1986
. “
Effect of Boundary Conditions upon Centrifuge Experiments Using Ground Motion Simulation
.”
Geotechnical Testing Journal
9
, no. 
2
(June):
61
71
. https://doi.org/10.1520/GTJ11031J
66.
Yoshida
,
N.
,
Tokimatsu
K.
,
Yasuda
S.
,
Kokusho
T.
, and
Okimura
T.
.
2001
. “
Geotechnical Aspects of Damage in Adapazari City during 1999 Kocaeli, Turkey Earthquake
.”
Soils and Foundations
41
, no. 
4
(August):
25
45
. https://doi.org/10.3208/sandf.41.4_25
67.
Yoshimi
,
Y.
and
Tokimatsu
K.
.
1977
. “
Settlement of Buildings on Saturated Sand during Earthquakes
.”
Soils and Foundations
17
, no. 
1
(March):
23
38
. https://doi.org/10.3208/sandf1972.17.23
68.
Zayed
,
M.
,
Luo
L.
,
Kim
K.
,
McCartney
J. S.
, and
Elgamal
A.
.
2017
. “
Development and Performance of a Laminar Container for Seismic Centrifuge Modeling
.”
Paper presented at the Third International Conference on Performance-Based Design in Earthquake Geotechnical Engineering (PBD-III)
,
Vancouver
,
Canada
, July
16
19
,
2017
.
69.
Zeng
,
X.
and
Schofield
A. N.
.
1996
. “
Design and Performance of an Equivalent-Shear-Beam Container for Earthquake Centrifuge Modelling
.”
Géotechnique
46
, no. 
1
(March):
83
102
. https://doi.org/10.1680/geot.1996.46.1.83
70.
Zhang
,
L. L.
,
Zhang
L. M.
, and
Tang
W. H.
.
2008
. “
Similarity of Soil Variability in Centrifuge Models
.”
Canadian Geotechnical Journal
45
, no. 
8
:
1118
1129
. https://doi.org/10.1139/T08-066
This content is only available via PDF.
You do not currently have access to this content.