Abstract

Transparent synthetic soils have been developed as a soil surrogate to enable internal visualization of geotechnical processes in physical models. While significant developments have been made to enhance the methodology and capabilities of transparent soil modelling, the technique is not yet exploited to its fullest potential. Tests are typically conducted at 1 g in small bench size models, which invokes concerns about the impact of scale and stress level observed in previously reported work. This paper recognized this limitation and outlines the development of improved testing methodology whereby the transparent soil and laser aided imaging technique are translated to the centrifuge environment. This has a considerable benefit such that increased stresses are provided, which better reflect the prototype condition. The paper describes the technical challenges associated with implementing this revised experimental methodology, summarizes the test equipment/systems developed, and presents initial experimental results to validate and confirm the successful implementation and scaling of transparent soil testing to the high gravity centrifuge test environment. A 0.6 m wide prototype strip foundation was tested at two scales using the principle of “modelling of models,” in which similar performance was observed. The scientific developments discussed have the potential to provide a step change in transparent soil modelling methodology, crucially providing more representative stress conditions that reflect prototype conditions, while making a broader positive contribution to physical modelling capabilities to assess complex soil–structure boundary problems.

References

1.
Ahmed
,
M.
and
Iskander
,
M.
,
2010
, “
Analysis of Tunnelling Induced Ground Movements Using Transparent Soil Models
,”
J. Geotech. Geoenviron. Eng.
, Vol
137
, No.
5
, pp.
525
535
.
2.
Andrawes
,
K.
and
Butterfield
,
R.
,
1973
, “
The Measurement of Planar Displacements of Sand Grains
,”
Geotechnique
, Vol.
23
, No.
5
, pp.
571
576
. https://doi.org/10.1680/geot.1973.23.4.571
3.
Black
,
J. A.
,
2012
, “
Ground displacement during press-in piling using transparent soil and PIV
,”
Proceedings of the International Press-In Association, 4th IPA Workshop
,
Singapore
, Dec 6–7,
International Press-In Association
,
Tokyo, Japan
, pp.
1
8
.
4.
Black
,
J. A.
,
2012
, “
Soil Sample Disturbance During Site Investigation
,” Technical Report to Environmental Scientifics Group—Geotechnical Services Division,
Environmental Scientifics Group
, Burton, UK.
5.
Black
,
J. A.
,
Baker
,
N.
, and
Ainsworth
,
A.
,
2014
, “
Establishing a 50 g-Ton Geotechnical Centrifuge at the University of Sheffield
,”
Proceedings of the 8th International Conference on Physical Modelling in Geotechnics
,
Perth, Australia
, Jan 14–17,
Gaudin
C.
and
White
D.
, Eds.,
CRC Press
,
Boca Raton, FL
, pp.
181
186
.
6.
Black
,
J. A.
and
Take
,
W.
,
2015
, “
A Framework for Assessing Optical Quality of Transparent Soil
,”
ASCE Geotech. Test. J.
(submitted).
7.
Black
,
J. A.
and
Tatari
,
A.
,
2015
, “
Transparent Soil to Model Thermal Processes: A Thermal Pile Example
,”
ASCE Geotech. Test. J.
(submitted).
8.
Butterfield
,
R.
,
Harkness
,
R.
, and
Andrawes
,
K.
,
1970
, “
A Stereo-Photogrammetric Method for Measuring Displacement Fields
,”
Geotechnique
, Vol.
20
, No.
3
, pp.
308
314
. https://doi.org/10.1680/geot.1970.20.3.308
9.
Davis
,
E. H.
and
Booker
,
J. R.
,
1973
, “
The Effect of Increasing Strength With Depth on the Bearing Capacity of Clays
,”
Geotechnique
, Vol.
23
, No.
3
, pp.
551
563
. https://doi.org/10.1680/geot.1973.23.4.551
10.
Finnie
,
I. M. S.
and
Randolph
,
M. F.
,
1994
, “
Punch-Through and Liquefaction Induced Failure of Shallow Foundations on Calcareous Sediments
,”
Proceedings of the 7th International Conference on Behaviour of Offshore Structures
,
Boston, MA
, July 12–15,
Pergamon Press
,
London
, pp.
217
230
.
11.
Forlati
,
G.
and
Black
,
J. A.
,
2014
, “
Impact of Pile Geometry on the Installation of Open Ended Press-In Piles
,”
Proceedings of the 8th International Conference on Physical Modelling in Geotechnics
,
Perth, Australia
, Jan 14–17,
Gaudin
C.
and
White
D.
, Eds.,
CRC Press
,
Boca Raton, FL
, pp.
763
769
.
12.
Gill
,
D.
and
Lehane
,
B.
,
2001
, “
An Optical Technique for Investigating Soil Displacement Patterns
,”
Geotech. Test. J.
, Vol.
24
, No.
3
, pp.
324
329
.
13.
Gill
,
D.
,
1999
, “
Experimental and Theoretical Investigations of Pile and Penetrometer Installation in Clay
,” Ph.D. thesis,
Trinity College
, Dublin, Ireland.
14.
Hird
,
C.
,
Ni
,
Q.
, and
Guymer
,
I.
,
2008
, “
Physical Modelling of Displacements Around Continuous Augers in Clay
,”
Foundations: Proceedings of the 2nd British Geotechnical Association International Conference on Foundations
,
Dundee, UK
, June 24–27,
Knappett
J.
, Ed., Vol.
1
,
IHS BRE Press
,
Englewood, CO
, pp.
565
574
.
15.
Iskander
,
M.
,
2010
,
Modelling With Transparent Soils: Visualizing Soil Structure Interaction and Multi Phase Flow, Non-Intrusively
,
Springer
,
New York
.
16.
Iskander
,
M.
,
Lai
,
J.
,
Oswald
,
C.
, and
Mannheimer
,
R.
,
1994
, “
Development of a Transparent Material to Model the Geotechnical Properties of Soils
,”
ASCE Geotech. Test. J.
, Vol.
17
, No.
4
, pp.
425
433
.
17.
Iskander
,
M.
and
Liu
,
J.
,
2010
, “
Spatial Deformation Measurement Using Transparent Soil
,”
ASCE Geotech. Test. J.
, Vol.
33
, No.
4
, pp.
314
321
.
18.
Iskander
,
M.
,
Lui
,
J.
, and
Sadek
,
S.
,
2002
, “
Transparent Amorphous Silica to Model Clay
,”
ASCE Geotech. Test. J.
, Vol.
128
, No.
3
, pp.
262
273
. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:3(262)
19.
Iskander
,
M.
,
Sadek
,
S.
, and
Lui
,
J.
,
2002
, “
Optical Measurement of Deformation Using Transparent Silica Gel to Model Sand
,”
Int. J. Phys. Modell. Geotech.
, Vol.
2
, No.
4
, pp.
27
40
.
20.
Kelly
,
P.
,
2013
, “
Soil Structure Interaction and Group Mechanics of Vibrated Stone Column Foundations
,” Ph.D. thesis,
University of Sheffield
, Sheffield, UK.
21.
Leung
,
P. K.
,
Schiffman
,
R. L.
,
Ko
,
H. Y.
, and
Pane
,
V.
,
1984
, “
Centrifuge Modelling of Shallow Foundation on Soft Soil
,”
Proc. 16th Offshore Technology Conference 3
, pp.
275
282
.
22.
Liu
,
J.
,
Iskander
,
M.
, and
Sadek
,
S.
,
2002
, “
Optical Measurement of Deformation Under Foundations Using a Transparent Soil Model
,”
International Conference on Physical Modelling in Geotechnics: ICPMG
,
St. Johns, Newfoundland, Canada
, July 10–12,
Phillips
R.
,
Guo
P. J.
and
Popescu
R.
, Eds.,
Taylor & Francis
,
London
, pp.
155
159
.
23.
McKelvey
,
D.
,
2002
, “
The Performance of Vibro Stone Column Reinforced Foundations in Deep Soft Ground
,” Ph.D. thesis,
Queens University
, Belfast, UK.
24.
McKelvey
,
D.
,
Sivakumar
,
V.
,
Bell
,
A.
, and
Graham
,
J.
,
2004
, “
Modelling Vibrated Stone Columns in Soft Clay
,”
Proc. Inst. Civ. Eng.: Geotech. Eng.
, Vol.
157
, No.
3
, pp.
137
149
. https://doi.org/10.1680/geng.2004.157.3.137
25.
Meyerhof
,
G. G.
,
1963
, “
Some Recent Research on the Bearing Capacity of Foundations
,”
Can. Geotech. J.
, Vol.
1
, No.
1
, pp.
16
26
. https://doi.org/10.1139/t63-003
26.
O'Loughlin
,
C. D.
and
Lehane
,
B. M.
,
2009
, “
Nonlinear Cone Penetration Test-Based Method for Predicting Footing Settlements on Sand
,”
ASCE Geotech. Geoenviron. Eng.
, Vol.
136
, No.
3
, pp.
409
416
.
27.
Prandtl
,
L.
,
1921
, “
On the Penetrating Strengths (Hardness) of Plastic Construction Materials and the Strength of Cutting Edges
,”
Z. Angew. Math. Mech.
, Vol.
1
, No.
1
, pp.
15
20
(in German).
28.
Sadek
,
S.
,
Iskander
,
M.
, and
Lui
,
J.
,
2002
, “
Geotechnical Properties of Transparent Silica
,”
Can. Geotech. J.
, Vol.
39
, No.
1
, pp.
111
124
. https://doi.org/10.1139/t01-075
29.
Sadek
,
S.
,
Iskander
,
M.
, and
Lui
,
J.
,
2003
, “
Accuracy of Digital Image Correlation for Measuring Deformations in Transparent Media
,”
ASCE J. Comput. Civ. Eng.
, Vol.
17
, No.
2
, pp.
88
96
. https://doi.org/10.1061/(ASCE)0887-3801(2003)17:2(88)
30.
Skempton
,
A. W.
,
1951
, “
The Bearing Capacity of Clays
,”
Build. Res. Congr.
, Vol.
1
,
1951
, pp.
180
189
.
31.
Song
,
Z.
,
Hu
,
Y.
,
O'Loughlin
,
C.
, and
Randolph
,
M.
,
2009
, “
Loss in Anchor Embedment During Plate Anchor Keying in Clay
,”
ASCE J. Geotech. Geoenviron. Eng.
, Vol.
135
, No.
10
, pp.
1475
1485
. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000098
32.
Stanier
,
S. A.
,
2011
, “
Modelling the Behaviour of Helical Screw Piles
,” Ph.D. thesis,
University of Sheffield
, Sheffield, UK.
33.
Stanier
,
S. A.
,
Black
,
J. A.
, and
Hird
,
C. C.
,
2012
, “
Enhancing Accuracy and Precision of Transparent Synthetic Soil Modelling
,”
Int. J. Phys. Modell. Geotech.
, Vol.
12
, No.
4
, pp.
162
175
. https://doi.org/10.1680/ijpmg.12.00005
34.
Stanier
,
S. A.
,
Black
,
J. A.
, and
Hird
,
C. C.
,
2013
, “
Modelling Helical Screw Piles in Clay and Design Implications
,”
Proc. Inst. Civ. Eng.: Geotech. Eng.
(available online).
35.
Taylor
,
R. N.
,
Grant
,
R. J.
,
Robson
,
S.
, and
Kuwano
,
J.
,
1998
, “
An Image Analysis System for Determining Plane and 3-D Displacements in Soil Models
,”
Proceedings of the International Conference Centrifuge 98
,
Tokyo, Japan
, Sept 23–25,
Taylor & Francis
,
London
, pp.
73
78
.
36.
Terzaghi
,
K.
,
1943
,
Theoretical Soil Mechanics
,
Wiley
,
New York
.
37.
Vesic
,
A. S.
,
1973
, “
Analysis of Ultimate Loads of Shallow Foundations
,”
ASCE J. Soil Mech. Found. Div.
, Vol.
99
, No.
1
, pp.
45
73
.
38.
White
,
D.
,
Take
,
W.
, and
Bolton
,
M.
,
2003
, “
Soil Deformation Measurement Using Particle Image Velocimetry (PIV) and Photogrammetry
,”
Geotechnique
, Vol.
53
, No.
7
, pp.
619
631
. https://doi.org/10.1680/geot.2003.53.7.619
This content is only available via PDF.
You do not currently have access to this content.