Abstract

The global push to combat climate change by transitioning to clean power generation is accelerating. One promising avenue involves using hydrogen in place of natural gas in gas turbine-based power plants. While the development of new hydrogen combustors shows potential, advancements in operational technologies are needed to ensure higher hydrogen cofiring with existing combustion systems. In our study, we propose a novel approach called heterogeneous natural gas–hydrogen input: varying hydrogen content between different nozzle groups in gas turbine combustors. Using a full-scale combustor of an F-class gas turbine model, we experimentally investigated the impact of heterogeneous hydrogen concentrations at the center and outer nozzles on combustion dynamics and emissions, comparing these with homogeneous fuel supply cases of 100% natural gas and natural gas–hydrogen mixtures. While hydrogen cofiring did not change the maximum amplitude of combustion dynamic pressure across the total frequency range, peak amplitudes in the 125–245 Hz domain were linearly proportional to the hydrogen cofiring ratio, with a 41.2% increase at 30% cofiring identified as a possible limiting factor. Our findings revealed a significant correlation between NOx emissions and combustion stability under varying levels of heterogeneity. Higher heterogeneity with intensive hydrogen input into the center nozzle improved cofiring performance, reducing the peak amplitude in the limiting frequency domain by 22% for a 25% cofiring ratio, potentially extending the critical hydrogen cofiring ratio. Implementing heterogeneous natural gas-hydrogen inputs emerges as a promising method to enhance combustion stability and enable effective hydrogen cofiring.

References

1.
Breer
,
B.
,
Rajagopalan
,
H.
,
Godbold
,
C.
,
Johnson
,
H.
, II
,
Emerson
,
B.
,
Acharya
,
V.
,
Sun
,
W.
,
Noble
,
D.
, and
Lieuwen
,
T.
,
2023
, “
Numerical Investigation of NOx Production From Premixed Hydrogen/Methane Fuel Blends
,”
Combust. Flame
,
255
, p.
112920
.10.1016/j.combustflame.2023.112920
2.
Yilmaz
,
I.
, and
Ilbas
,
M.
,
2008
, “
An Experimental Study on Hydrogen-Methane Mixtured Fuels
,”
Int. Commun. Heat Mass Transfer
,
35
(
2
), pp.
178
187
.10.1016/j.icheatmasstransfer.2007.06.004
3.
Ilbas
,
M.
, and
Yilmaz
,
I.
,
2012
, “
Experimental Analysis of the Effects of Hydrogen Addition on Methane Combustion
,”
Int. J. Energy Res.
,
36
(
5
), pp.
643
647
.10.1002/er.1822
4.
Cellek
,
M. S.
, and
Pınarbaşı
,
A.
,
2018
, “
Investigations on Performance and Emission Characteristics of an Industrial Low Swirl Burner While Burning Natural Gas, Methane, Hydrogen-Enriched Natural Gas and Hydrogen as Fuels
,”
Int. J. Hydrogen Energy
,
43
(
2
), pp.
1194
1207
.10.1016/j.ijhydene.2017.05.107
5.
Mohammad
,
B. S.
,
McManus
,
K.
,
Brand
,
A.
,
Elkady
,
A. M.
, and
Cuppoletti
,
D.
,
2020
, “
Hydrogen Enrichment Impact on Gas Turbine Combustion Characteristics
,”
ASME
Paper No. GT2020-15294.10.1115/GT2020-15294
6.
Douglas
,
C. M.
,
Shaw
,
S. L.
,
Martz
,
T. D.
,
Steele
,
R. C.
,
Noble
,
D. R.
,
Emerson
,
B. L.
, and
Lieuwen
,
T. C.
,
2022
, “
Pollutant Emissions Reporting and Performance Considerations for Hydrogen–Hydrocarbon Fuels in Gas Turbines
,”
ASME J. Eng. Gas Turbine. Power
,
144
(
9
), p.
091003
.10.1115/1.4054949
7.
]
Strollo
,
J.
,
Peluso
,
S.
, and
O'Connor
,
J.
,
2021
, “
Effect of Hydrogen on Steady-State and Transient Combustion Instability Characteristics
,”
ASME J. Eng. Gas Turbine. Power
,
143
(
7
), p.
071023
.10.1115/1.4049481
8.
Rizkalla
,
H.
,
Hernandez
,
F.
,
Bhattu
,
R. K.
, and
Stuttaford
,
P.
,
2018
, “
FlameSheet™ Combustor Extended Engine Validation for Operational Flexibility and Low Emissions
,”
ASME
Paper No. GT2018-75764.10.1115/GT2018-75764
9.
Bouten
,
T.
,
Withag
,
J.
,
Axelsson
,
L.
,
Koomen
,
J.
,
Jansen
,
D.
, and
Stuttaford
,
P.
,
2021
, “
Development and Atmospheric Testing of a High Hydrogen FlameSheet™ Combustor for the OP16 Gas Turbine
,”
ASME
Paper No. GT2021-59236.10.1115/GT2021-59236
10.
Hernandez
,
F.
,
Bhattu
,
R. K.
,
Kalb
,
B.
,
Yaquinto
,
M.
,
Vogel
,
G.
, and
Rizkalla
,
H.
,
2023
, “
FlameSheet™ Combustion Multi-Platform Enhancements & Full Interval Validation for Extended Operational Flexibility, Low Emissions & High Hydrogen Capability
,”
ASME
Paper No. GT2023-104166.10.1115/GT2023-104166
11.
Funke
,
H. H.-W.
,
Robinson
,
A. E.
, and
Rőnna
,
U.
,
2008
, “
Development and Testing of a 10 kW Diffusive Micromix Combustor for Hydrogen-Fuelled μ-Scale Gas Turbines
,”
ASME
Paper No. GT2008-50418.10.1115/GT2008-50418
12.
Funke
,
H. H.-W.
,
Boerner
,
S.
,
Keinz
,
J.
,
Kusterer
,
K.
,
Kroniger
,
D.
,
Kitajima
,
J.
,
Kazari
,
M.
, and
Horikawa
,
A.
,
2012
, “
Numerical and Experimental Characterization of Low NOx Micromix Combustion Principle for Industrial Hydrogen Gas Turbine Applications
,”
ASME
Paper No. GT2012-69421.10.1115/GT2012-69421
13.
Steele
,
R.
,
Ettlinger
,
A.
,
Zandes
,
T.
,
Alexander
,
M.
,
Hockman
,
B.
, and
Goldmeer
,
J.
,
2023
, “
Hydrogen Co-Firing Demonstration at New York Power Authority Brentwood Site: GE LM6000 Gas Turbine
,”
ASME
Paper No. GT2023-101283.10.1115/GT2023-101283
14.
Harper
,
J.
,
Cloyd
,
S.
,
Pigon
,
T.
,
Thomas
,
B.
,
Wilson
,
J.
,
Johnson
,
E.
, and
Noble
,
D. R.
,
2023
, “
Hydrogen Co-Firing Demonstration at Georgia Power’s Plant McDonough: M501G Gas Turbine
,”
ASME
Paper No. GT2023-102660.10.1115/GT2023-102660
15.
Pigon
,
T.
,
Cloyd
,
S.
,
Springer
,
C.
,
Boggs
,
J.
,
Shiraiwa
,
T.
, and
Yamazaki
,
S.
,
2023
, “
Best From Hydrogen Fuel System Retrofit
,”
ASME
Paper No. GT2023-101368.10.1115/GT2023-101368
16.
Goy
,
C. J.
,
James
,
S. R.
, and
Rea
,
S.
,
2005
, “
Monitoring Combustion Instabilities: E.ON UK’s Experience. Chapter 8
,”
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling, Progress in Astronautics and Aeronautics
, Vol.
210
,
T.
Lieuwen
, and
V.
Yang
, eds.,
American Institute of Aeronautics and Astronautics, Inc., Reston, VA
, pp.
163
175
.
17.
Meng
,
S.
,
Zhou
,
H.
, and
Cen
,
K.
,
2019
, “
Application of the Perforated Plate in Passive Control of the Nonpremixed Swirl Combustion Instability Under Acoustic Excitation
,”
ASME J. Eng. Gas Turbine. Power
,
141
(
9
), p.
091007
.10.1115/1.4043848
18.
Gysling
,
D. L.
,
Copeland
,
G. S.
,
McCormick
,
D. C.
, and
Proscia
,
W. M.
,
2000
, “
Combustion System Damping Augmentation With Helmholtz Resonators
,”
ASME J. Eng. Gas Turbine. Power
,
122
(
2
), pp.
269
274
.10.1115/1.483205
19.
Samarasinghe
,
J.
,
Culler
,
W.
,
Quay
,
B. D.
,
Santavicca
,
D. A.
, and
O'Connor
,
J.
,
2017
, “
The Effect of Fuel Staging on the Structure and Instability Characteristics of Swirl-Stabilized Flames in a Lean Premixed Multinozzle Can Combustor
,”
ASME J. Eng. Gas Turbine. Power
,
139
(
12
), p.
121504
.10.1115/1.4037461
20.
Li
,
J.
,
Kwon
,
H.
,
Seksinsky
,
D.
,
Doleiden
,
D.
,
O'Connor
,
J.
,
Xuan
,
Y.
,
Akiki
,
M.
, and
Blust
,
J.
,
2022
, “
Describing the Mechanism of Instability Suppression Using a Central Pilot Flame With Coupled Experiments and Simulations
,”
ASME J. Eng. Gas Turbine. Power
,
144
(
1
), p.
011015
.10.1115/1.4052384
21.
Oztarlik
,
G.
,
Selle
,
L.
,
Poinsot
,
T.
, and
Schuller
,
T.
,
2020
, “
Suppression of Instabilities of Swirled Premixed Flames With Minimal Secondary Hydrogen Injection
,”
Combust. Flame
,
214
, pp.
266
276
.10.1016/j.combustflame.2019.12.032
22.
Schuller
,
T.
,
Marragou
,
S.
,
Oztarlik
,
G.
,
Poinsot
,
T.
, and
Selle
,
L.
,
2022
, “
Influence of Hydrogen Content and Injection Scheme on the Describing Function of Swirled Flames
,”
Combust. Flame
,
240
, p.
111974
.10.1016/j.combustflame.2021.111974
23.
Kwak
,
S.
,
Choi
,
J.
,
Lee
,
M. C.
, and
Yoon
,
Y.
,
2023
, “
Attenuation of Combustion Instability in a Fuel-Staged Dual-Nozzle Gas Turbine Combustor With Asymmetric Hydrogen Composition
,”
Proc. Combust. Inst.
,
39
(
4
), pp.
4681
4690
.10.1016/j.proci.2022.08.039
24.
Park
,
S.
,
Shin
,
J.
,
Park
,
J.
,
Lee
,
S.
, and
Choi
,
N.
,
2023
, “
Comparison of Hydrogen and Ammonia Co-Firing With Natural Gas Using a Practical Gas Turbine Combustor (501F) Under Atmospheric Conditions: Changes in Metal Temperature, Pattern Factor and NOx Emission
,”
ASME
Paper No. GT2023-103364.10.1115/GT2023-103364
25.
Albrecht
,
P.
,
Bade
,
S.
,
Lacarelle
,
A.
,
Paschereit
,
C. O.
, and
Gutmark
,
E.
,
2010
, “
Instability Control by Premixed Pilot Flames
,”
ASME J. Eng. Gas Turbine. Power
,
132
(
4
), p.
041501
.10.1115/1.3019293
26.
Paschereit
,
C. O.
,
Gutmark
,
E.
, and
Weisenstein
,
W.
,
1999
, “
Control of Thermoacoustic Instabilities in a Premixed Combustor by Fuel Modulation
,”
AIAA
Paper No. 99-0711.10.2514/6.99-0711
27.
Lee
,
M. C.
,
Yoon
,
J.
,
Joo
,
S.
,
Kim
,
J.
,
Hwang
,
J.
, and
Yoon
,
Y.
,
2015
, “
Investigation into the Cause of High Multi-Mode Combustion Instability of H2/CO/CH4 Syngas in a Partially Premixed Gas Turbine Model Combustor
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3263
3271
.10.1016/j.proci.2014.07.013
28.
Nam
,
J.
, and
Yoh
,
J. J.
,
2020
, “
A Numerical Investigation of the Effects of Hydrogen Addition on Combustion Instability Inside a Partially-Premixed Swirl Combustor
,”
Appl. Therm. Eng.
,
176
, p.
115478
.10.1016/j.applthermaleng.2020.115478
29.
Yang
,
X.
,
Wang
,
T.
,
Zhang
,
Y.
,
Zhang
,
H.
,
Wu
,
Y.
, and
Zhang
,
J.
,
2022
, “
Hydrogen Effect on Flame Extinction of Hydrogen-Enriched Methane/Air Premixed Flames: An Assessment From the Combustion Safety Point of View
,”
Energy
,
239
, p.
122248
.10.1016/j.energy.2021.122248
You do not currently have access to this content.