Abstract

The study investigates the impact of diverse endwall contouring strategies on the operational stability of a high-pressure ratio centrifugal compressor stage. Employing numerical simulation techniques, this study examines the implications of contoured wall positions, specifically convex profiles at the pressure side (PS) and/or concave profiles at the suction side (SS), as well as asymmetric endwall contouring, on both stage performance and internal flow field within the centrifugal compressor. And the stability enhancement mechanism of endwall contouring is clarified. The results demonstrate that employing full circular contoured vaned diffusers on the hub-side wall can achieve a maximum improvement in stall margin of 15.10%. Additionally, the diffuser featuring solely convex profiles at the pressure side on the hub-side wall exhibits an augmented stall margin by 8.39%, with a reduction in performance loss at low flow rate conditions. The asymmetric endwall contouring improves stall margin by 8.39%, and mitigates the performance loss across the entire operating range. At the near-stall (NS) point, the contoured endwalls redirect fluid toward the suction side, thereby mitigating the incidence at the vane leading edge and attenuating the interaction between the impeller trailing edge vortex and the diffuser leading edge vortex. Moreover, concave profiles serve to accelerate the fluid on the suction side along the flow direction, thereby suppressing the corner separation and weakening passage blockages. Simultaneously, the advantages of endwall contouring in vane diffusers extend to the improvement in the circumferential nonuniformity of flow fields and the enhancement in diffuser stability.

References

1.
Yoshinaga
,
Y.
,
Gyobu
,
I.
,
Mishina
,
H.
,
Koseki
,
F.
, and
Nishida
,
H.
,
1980
, “
Aerodynamic Performance of a Centrifugal Compressor With Vaned Diffusers
,”
ASME J. Fluid Eng.
,
102
(
4
), pp.
486
493
.10.1115/1.3240730
2.
Skoch
,
G. J.
,
2005
, “
Experimental Investigation of Diffuser Hub Injection to Improve Centrifugal Compressor Stability
,”
ASME J. Turbomach.
,
127
(
1
), pp.
107
117
.10.1115/1.1812779
3.
Skoch
,
G. J.
,
2003
, “
Experimental Investigation of Centrifugal Compressor Stabilization Techniques
,”
ASME J. Turbomach.
,
125
(
4
), pp.
704
713
.10.1115/1.1624846
4.
Spakovszky
,
Z. S.
,
2004
, “
Backward Traveling Rotating Stall Waves in Centrifugal Compressors
,”
ASME J. Turbomach.
,
126
(
1
), pp.
1
12
.10.1115/1.1643382
5.
Halawa
,
T.
,
Alqaradawi
,
M.
,
Badr
,
O.
, and
Gadala
,
M. S.
,
2014
, “
Numerical Simulation of Stall Development Into Surge and Stall Control Using Air Injection in Centrifugal Compressors
,”
ASME
Paper No. POWER2014-32053.10.1115/POWER2014-32053
6.
Halawa
,
T.
,
Gadala
,
M. S.
,
Alqaradawi
,
M.
, and
Badr
,
O.
,
2015
, “
Optimization of the Efficiency of Stall Control Using Air Injection for Centrifugal Compressors
,”
ASME J. Eng. Gas Turbines Power
,
137
(
7
), p.
072604
.10.1115/1.4029169
7.
Galloway
,
L.
,
Rusch
,
D.
,
Spence
,
S.
,
Vogel
,
K.
,
Hunziker
,
R.
, and
Kim
,
S. I.
,
2018
, “
An Investigation of Centrifugal Compressor Stability Enhancement Using a Novel Vaned Diffuser Recirculation Technique
,”
ASME J. Turbomach.
,
140
(
12
), p.
121009
.10.1115/1.4041601
8.
Xi
,
G.
,
Ma
,
Y.
,
Wu
,
G. K.
,
Zhang
,
K. Y.
,
Xiao
,
W.
, and
Mou
,
Z. J.
,
2013
, “
Exploration of a New-Type Grooved Casing Treatment Configuration for a High-Speed Small-Size Centrifugal Compressor
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
227
(
4
), pp.
464
478
.10.1177/0957650913477094
9.
Chen
,
X.
,
Ai
,
Z.
,
Ji
,
Y.
, and
Qin
,
G.
,
2017
, “
Numerical Investigation of a Centrifugal Compressor With a Single Circumferential Groove in Different Types of Diffusers
,”
ASME
Paper No. GT2017-63151.10.1115/GT2017-63151
10.
Gunadal
,
S.
, and
Govardhan
,
M.
,
2019
, “
Improvement in Stable Operating Range of a Centrifugal Compressor With Leaned Diffuser Vanes
,”
J. Mech. Sci. Technol.
,
33
(
11
), pp.
5261
5269
.10.1007/s12206-019-1017-3
11.
Zhang
,
Y.
,
Lu
,
X.
,
Zhang
,
Y.
,
Han
,
G.
, and
Zhu
,
J.
,
2019
, “
Parametric Study of Slotted Diffuser Effects on a Highly Loaded Centrifugal Compressor
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
233
(
6
), pp.
702
714
.10.1177/0957650918824013
12.
Sun
,
Z.
,
Zheng
,
X.
,
Tamaki
,
H.
, and
Kaneko
,
Y.
,
2019
, “
Flow Instability Suppression and Deep Surge Delay by Non-Axisymmetric Vaned Diffuser in a Centrifugal Compressor
,”
Aerosp. Sci. Technol.
,
95
, p.
105494
.10.1016/j.ast.2019.105494
13.
Hermann
,
D.
,
Wirsum
,
M.
,
Robinson
,
D.
, and
Jenny
,
P.
,
2020
, “
Operating Range Extension of an Open Impeller Centrifugal Compressor Stage Utilising 3D Diffuser End Wall Contouring
,”
Int. J. Turbomach. Propul. Power
,
5
(
1
), p.
4
.10.3390/ijtpp5010004
14.
Hermann
,
D.
,
Wirsum
,
M.
,
Robinson
,
D.
, and
Jenny
,
P.
,
2021
, “
Experimental and Numerical Study of an Open Impeller Centrifugal Compressor Stage Utilizing Three-Dimensional (3D) Diffuser End Wall Contouring for Operating Range Extension
,”
ASME J. Turbomach.
,
143
(
9
), p.
091018
.10.1115/1.4051045
15.
Lang
,
J.
,
Chu
,
W.
,
Spence
,
S.
,
An
,
G.
, and
Galloway
,
L.
,
2021
, “
Performance Enhancement of a Centrifugal Compressor Stage Using Profiled End Wall (PEW) Treatments in the Radial Vaned Diffuser
,”
Aerosp. Sci. Technol.
,
110
, p.
106488
.10.1016/j.ast.2020.106488
16.
Cui
,
Q.
,
Qin
,
G.
,
Jia
,
C.
,
Wang
,
Y.
, and
Lei
,
J.
,
2022
, “
Numerical Investigation of Centrifugal Compressor Stability Enhancement Using Vaned Diffuser Endwall Contouring Technology
,”
Energy Sci. Eng.
,
10
(
8
), pp.
2808
2826
.10.1002/ese3.1169
17.
Ji
,
C.
,
Wang
,
Z.
,
Tang
,
Y.
, and
Xi
,
G.
,
2021
, “
A Flow Information-Based Prediction Model Applied to the Nonaxisymmetric Hub Optimization of a Centrifugal Impeller
,”
ASME J. Mech. Des.
,
143
(
10
), p.
103502
.10.1115/1.4050655
18.
Ji
,
C.
,
Wang
,
Z.
, and
Xi
,
G.
,
2022
, “
Computer 3D Vision-Aided Full-3D Optimization of a Centrifugal Impeller
,”
ASME J. Turbomach.
,
144
(
9
), p.
091011
.10.1115/1.4053744
19.
Fujisawa
,
N.
,
Hara
,
S.
, and
Ohta
,
Y.
,
2016
, “
Unsteady Behavior of Leading-Edge Vortex and Diffuser Stall in a Centrifugal Compressor With Vaned Diffuser
,”
J. Therm. Sci.
,
25
(
1
), pp.
13
21
.10.1007/s11630-016-0829-z
20.
Fujisawa
,
N.
,
Inui
,
T.
, and
Ohta
,
Y.
,
2019
, “
Evolution Process of Diffuser Stall in a Centrifugal Compressor With Vaned Diffuser
,”
ASME J. Turbomach.
,
141
(
4
), p.
041009
.10.1115/1.4042249
21.
Bourgeois
,
J. A.
,
Martinuzzi
,
R. J.
,
Savory
,
E.
,
Zhang
,
C.
, and
Roberts
,
D. A.
,
2011
, “
Assessment of Turbulence Model Predictions for an Aero-Engine Centrifugal Compressor
,”
ASME J. Turbomach.
,
133
(
1
), p.
011025
.10.1115/1.4001136
22.
Gibson
,
L.
,
Galloway
,
L.
,
Kim
,
S. I.
, and
Spence
,
S.
,
2017
, “
Assessment of Turbulence Model Predictions for a Centrifugal Compressor Simulation
,”
J. Global Power Propul. Soc.
,
1
, pp.
142
156
.10.22261/2II890
23.
Li
,
Z.
,
Lu
,
X.
,
Wu
,
Y.
, and
Han
,
G.
,
2023
, “
Quantitative Investigation of the Turbulence Model Effect on High-Pressure-Ratio Centrifugal Compressor Performance Prediction
,”
Int. Commun. Heat Mass
,
142
, p.
106644
.10.1016/j.icheatmasstransfer.2023.106644
24.
Liu
,
J.
,
Wang
,
D.
, and
Huang
,
X.
,
2023
, “
Investigation of Turbulence Models for Aerodynamic Analysis of a High-Pressure-Ratio Centrifugal Compressor
,”
Phys. Fluids
,
35
(
10
), p.
106108
.10.1063/5.0169214
25.
Liu
,
C.
,
Wang
,
Y.
,
Yang
,
Y.
, and
Duan
,
Z.
,
2016
, “
New Omega Vortex Identification Method
,”
Sci. China-Phys. Mech. Astron.
,
59
(
8
), p.
684711
.10.1007/s11433-016-0022-6
You do not currently have access to this content.