Abstract

Methanol is a promising alternative fuel, which can assist in reducing emissions in heavy-duty (HD) dual-fuel (DF) compression ignition (CI) engines. In medium and large bore marine engines, DF operation is achieved through either direct injection (DI) or port fuel injection (PFI) of methanol with diesel acting as a DI pilot fuel for ignition. However, the injection of methanol presents a significant challenge due to its high latent heat of vaporization and decreased lower heating value (LHV) compared to diesel. Therefore, for the same energy content operation, methanol requires around eight times the amount of heat to evaporate completely in comparison to diesel, which results in lower in-cylinder temperatures. This charge cooling effect leads to a strong negative temperature gradient influencing ignition and flame propagation. This paper aims to quantify the cooling effect of methanol in a heavy-duty dual-fuel direct injection compression ignition (DICI) engine environment. The presented methodology uses computational fluid dynamics (CFD) simulations to model methanol sprays with validation originating from the engine combustion network (ECN) Spray D experimental data. The CFD models operate within the Lagrangian–Eulerian framework in CONVERGE-CFD using the Reynolds Averaged Navier Stokes (RANS) turbulence modeling. Compared to diesel, injecting methanol with the same energy content exhibited up to 100 K more decreased temperature within the mixture. Consequently, this cooled mixture may pose challenges to combustion stability due to the intense temperature gradients. Nonetheless, lower mixture temperature decreases NOx emissions, which can prove beneficial for high methanol energy fractions in dual-fuel DICI engines.

References

1.
Kessel
,
D. G.
,
2000
, “
Global Warming—Facts, Assessment, Countermeasures
,”
J. Pet. Sci. Eng.
,
26
(
1–4
), pp.
157
168
.10.1016/S0920-4105(00)00030-9
2.
IMO
,
2020
, “
International Maritime Organization: Fourth Greenhouse Gas Study 2020
,” International Maritime Organization, London, UK, accessed Feb. 5, 2023, https://www.imo.org/en/OurWork/Environment/Pages/Fourth-IMO-Greenhouse-Gas-Study-2020.aspx
3.
Maes
,
N.
,
Dam
,
N.
,
Somers
,
B.
,
Lucchini
,
T.
,
D'Errico
,
G.
, and
Hardy
,
G.
,
2018
, “
Heavy-Duty Diesel Engine Spray Combustion Processes: Experiments and Numerical Simulations
,”
SAE
Paper No. 2018.10.4271/2018
4.
Reitz
,
R. D.
,
Ogawa
,
H.
,
Payri
,
R.
,
Fansler
,
T.
,
Kokjohn
,
S.
,
Moriyoshi
,
Y.
,
Agarwal
,
A. K.
, et al.,
2020
, “
IJER Editorial: The Future of the Internal Combustion Engine
,”
Int. J. Engine Res.
,
21
(
1
), pp.
3
10
.10.1177/1468087419877990
5.
Kalghatgi
,
G.
,
2018
, “
Is It Really the End of Internal Combustion Engines and Petroleum in Transport?
,”
Appl. Energy
,
225
, pp.
965
974
.10.1016/j.apenergy.2018.05.076
6.
Tuner
,
M.
,
2016
, “
Review and Benchmarking of Alternative Fuels in Conventional and Advanced Engine Concepts With Emphasis on Efficiency, CO2, and Regulated Emissions
,”
SAE
Paper No. 2016-01-0882.10.4271/2016-01-0882
7.
Ait Allal
,
A.
,
Mansouri
,
K.
,
Youssfi
,
M.
, and
Qbadou
,
M.
,
2019
, “
Toward an Evaluation of Marine Fuels for a Clean and Efficient Autonomous Ship Propulsion Energy
,”
Mater. Today: Proc.
,
13
, pp.
486
495
.10.1016/j.matpr.2019.04.005
8.
Verhelst
,
S.
,
Turner
,
J. W.
,
Sileghem
,
L.
, and
Vancoillie
,
J.
,
2019
, “
Methanol as a Fuel for Internal Combustion Engines
,”
Prog. Energy Combust. Sci.
,
70
, pp.
43
88
.10.1016/j.pecs.2018.10.001
9.
Pipicelli
,
M.
,
Di Luca
,
G.
,
Ianniello
,
R.
,
Gimelli
,
A.
, and
Beatrice
,
C.
,
2022
, “
Alcohol Fuels in Compression Ignition Engines
,”
Energy, Environment, and Sustainability
,
Springer, Singapore
, pp.
9
31.
10.1007/978-981-16-8751-8_2
10.
Zincir
,
B.
, and
Deniz
,
C.
,
2021
, “
Methanol as a Fuel for Marine Diesel Engines
,”
Energy, Environment, and Sustainability
,
Springer, Singapore
, pp.
45
85.
10.1007/978-981-16-0931-2_4
11.
Korberg
,
A. D.
,
Brynolf
,
S.
,
Grahn
,
M.
, and
Skov
,
I. R.
,
2021
, “
Techno-Economic Assessment of Advanced Fuels and Propulsion Systems in Future Fossil-Free Ships
,”
Renewable Sustainable Energy Rev.
,
142
, p.
110861
.10.1016/j.rser.2021.110861
12.
Karim
,
G. A.
,
2015
,
Dual-Fuel Diesel Engines
,
CRC Press
, Boca Raton, FL.
13.
Krishnasamy
,
A.
,
Gupta
,
S. K.
, and
Reitz
,
R. D.
,
2021
, “
Prospective Fuels for Diesel Low Temperature Combustion Engine Applications: A Critical Review
,”
Int. J. Engine Res.
,
22
(
7
), pp.
2071
2106
.10.1177/1468087420960857
14.
Karimkashi
,
S.
,
Gadalla
,
M.
,
Kannan
,
J.
,
Tekgül
,
B.
,
Kaario
,
O.
, and
Vuorinen
,
V.
,
2023
, “
Large-Eddy Simulation of Diesel Pilot Spray Ignition in Lean Methane-Air and Methanol-Air Mixtures at Different Ambient Temperatures
,”
Int. J. Engine Res.
,
24
(
3
), pp.
965
981
.10.1177/14680874211070368
15.
Shamun
,
S.
,
Zincir
,
B.
,
Shukla
,
P.
,
Garcia Valladolid
,
P.
,
Verhelst
,
S.
, and
Tunér
,
M.
,
2018
, “
Quantification and Analysis of the Charge Cooling Effect of Methanol in a Compression Ignition Engine Utilizing PPC Strategy
,”
ASME
Paper No. ICEF2018-9657.10.1115/ICEF2018-9657
16.
Svensson
,
M.
,
Tuner
,
M.
, and
Verhelst
,
S.
,
2022
, “
Low Load Ignitability of Methanol in a Heavy-Duty Compression Ignition Engine
,”
SAE
Paper No. 2022-01-1093.10.4271/2022-01-1093
17.
Zincir
,
B.
,
Shukla
,
P.
,
Shamun
,
S.
,
Tuner
,
M.
,
Deniz
,
C.
, and
Johansson
,
B.
,
2019
, “
Investigation of Effects of Intake Temperature on Low Load Limitations of Methanol Partially Premixed Combustion
,”
Energy Fuels
,
33
(
6
), pp.
5695
5709
.10.1021/acs.energyfuels.9b00660
18.
Dong
,
Y.
,
Kaario
,
O.
,
Hassan
,
G.
,
Ranta
,
O.
,
Larmi
,
M.
, and
Johansson
,
B.
,
2020
, “
High-Pressure Direct Injection of Methanol and Pilot Diesel: A Non-Premixed Dual-Fuel Engine Concept
,”
Fuel
,
277
, p.
117932
.10.1016/j.fuel.2020.117932
19.
Matamis
,
A.
,
Lonn
,
S.
,
Luise
,
L.
,
Vaglieco
,
B. M.
,
Tuner
,
M.
,
Andersson
,
O.
,
Alden
,
M.
, and
Richter
,
M.
,
2021
, “
Optical Characterization of Methanol Compression-Ignition Combustion in a Heavy-Duty Engine
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
5509
5517
.10.1016/j.proci.2020.06.024
20.
Dierickx
,
J.
,
Verbiest
,
J.
,
Janvier
,
T.
,
Peeters
,
J.
,
Sileghem
,
L.
, and
Verhelst
,
S.
,
2021
, “
Retrofitting a High-Speed Marine Engine to Dual-Fuel Methanol-Diesel Operation: A Comparison of Multiple and Single Point Methanol Port Injection
,”
Fuel Commun.
,
7
, p.
100010
.10.1016/j.jfueco.2021.100010
21.
Wang
,
Y.
,
Dong
,
P.
,
Long
,
W.
,
Tian
,
J.
,
Wei
,
F.
,
Wang
,
Q.
,
Cui
,
Z.
, and
Li
,
B.
,
2022
, “
Characteristics of Evaporating Spray for Direct Injection Methanol Engine: Comparison Between Methanol and Diesel Spray
,”
Processes
,
10
(
6
), p.
1132
.10.3390/pr10061132
22.
Kaario
,
O. T.
,
Karimkashi
,
S.
,
Bhattacharya
,
A.
,
Vuorinen
,
V.
,
Larmi
,
M.
, and
Bai
,
X.
,
2024
, “
A Comparative Study on Methanol and n-Dodecane Spray Flames Using Large-Eddy Simulation
,”
Combust. Flame
,
260
, p.
113277
.10.1016/j.combustflame.2023.113277
23.
CONVERGE
,
2024
, “
CONVERGE CFD Software Website
,” CONVERGE, Northville, MI, accessed Nov. 13, 2024, https://convergecfd.com/
24.
Agarwal
,
A. K.
,
Gautam
,
A.
,
Sharma
,
N.
, and
Singh
,
A. P.
,
2019
,
Methanol and the Alternate Fuel Economy
,
Springer
, Singapore.
25.
Zoumpourlos
,
K.
,
Coraddu
,
A.
,
Geertsma
,
R.
, and
van de Ketterij
,
R.
,
2023
, “
Evaluation of Methanol Sprays in Marine Internal Combustion Engines: A Case Study for Port Fuel Injection Systems
,”
Proceeding of Modelling and Optimisation of Ship Energy Systems Conference
, Delft, The Netherlands, Oct. 26–27.10.59490/moses.2023.655
26.
ECN
,
2024
, “
Engine Combustion Network Spray-D Nozzle Geometry
,” ECN, Wellington, New Zealand, accessed Sept. 1, 2023, https://ecn.sandia.gov/diesel-spray-combustion/target-condition/spray-d-nozzle-geometry/
27.
ECN
,
2023
, “
Engine Combustion Network Spray-M Data
,” ECN, Wellington, New Zealand, accessed Oct. 7, 2023, https://ecn.sandia.gov/data/sandia-spray-m-data/
28.
Senecal
,
P.
,
Pomraning
,
E.
,
Richards
,
K.
, and
Som
,
S.
,
2012
, “
Grid-Convergent Spray Models for Internal Combustion Engine CFD Simulations
,”
ASME
Paper No. JERT-13-1108.10.1115/JERT-13-1108
29.
Han
,
Z.
, and
Reitz
,
R. D.
,
1995
, “
Turbulence Modeling of Internal Combustion Engines Using RNG κ-ε Models
,”
Combust. Sci. Technol.
,
106
(
4–6
), pp.
267
295
.10.1080/00102209508907782
30.
CONVERGE CFD Software
,
2022
,
CONVERGE MANUAL v3.0
,
Convergent Science Inc
., Madison, WI.
31.
Issa
,
R. I.
,
1986
, “
Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting
,”
J. Comput. Phys.
,
62
(
1
), pp.
40
65
.10.1016/0021-9991(86)90099-9
32.
Ferziger
,
J. H.
,
Perić
,
M.
, and
Street
,
R. L.
,
2002
,
Computational Methods for Fluid Dynamics
, Vol.
3
,
Springer
Nature, Switzerland.
33.
Horvath
,
A.
,
1974
, “
Redlich-Kwong Equation of State: Review for Chemical Engineering Calculations
,”
Chem. Eng. Sci.
,
29
(
5
), pp.
1334
1340
.10.1016/0009-2509(74)80147-8
34.
Di Matteo
,
A.
,
Bao
,
H.
, and
Somers
,
B.
,
2022
, “
Modeling Spray C and Spray D With FGM Within the Framework of RANS and LES
,”
Front. Mech. Eng.
,
8
, p.
1013138
.10.3389/fmech.2022.1013138
35.
Kalwar
,
A.
,
Chintagunti
,
S.
, and
Agarwal
,
A. K.
,
2021
, “
Gasohol Sprays Simulations of a Multi-Hole GDI Injector in Engine-Like Conditions
,”
SAE
Paper No. 2021-01-0549.10.4271/2021-01-0549
36.
Reitz
,
R. D.
, and
Diwakar
,
R.
,
1987
, “
Structure of High-Pressure Fuel Sprays
,”
SAE Trans.
, pp.
492
509
.10.4271/870598
37.
Beale
,
J. C.
, and
Reitz
,
R. D.
,
1999
, “
Modeling Spray Atomization With the Kelvin-Helmholtz/Rayleigh-Taylor Hybrid Model
,”
Atomization Sprays
,
9
(
6
), pp.
623
650
.10.1615/AtomizSpr.v9.i6.40
38.
Schmidt
,
D. P.
, and
Rutland
,
C. J.
,
2000
, “
A New Droplet Collision Algorithm
,”
J. Comput. Phys.
,
164
(
1
), pp.
62
80
.10.1006/jcph.2000.6568
39.
Post
,
S. L.
, and
Abraham
,
J.
,
2002
, “
Modeling the Outcome of Drop–Drop Collisions in Diesel Sprays
,”
Int. J. Multiphase Flow
,
28
(
6
), pp.
997
1019
.10.1016/S0301-9322(02)00007-1
40.
Liu
,
A. B.
,
Mather
,
D.
, and
Reitz
,
R. D.
,
1993
, “
Modeling the Effects of Drop Drag and Breakup on Fuel Sprays
,”
SAE Trans.
, pp.
83
95
.10.4271/930072
41.
O'Rourke
,
P. J.
,
1989
, “
Statistical Properties and Numerical Implementation of a Model for Droplet Dispersion in a Turbulent Gas
,”
J. Comput. Phys.
,
83
(
2
), pp.
345
360
.10.1016/0021-9991(89)90123-X
42.
Miller
,
R.
,
Harstad
,
K.
, and
Bellan
,
J.
,
1998
, “
Evaluation of Equilibrium and Non-Equilibrium Evaporation Models for Many-Droplet Gas-Liquid Flow Simulations
,”
Int. Journal Multiphase Flow
,
24
(
6
), pp.
1025
1055
.10.1016/S0301-9322(98)00028-7
43.
CMT
,
2016
, “
Spray C/D Rate of Injection
,” Clean Mobility and Thermofluids, Valencia, Spain, accessed Sept. 1, 2023, https://www.cmt.upv.es/#/ecn/download/nozzlecharac/ncSprayCDRateOfInj
44.
Maes
,
N.
,
Skeen
,
S. A.
,
Bardi
,
M.
,
Fitzgerald
,
R. P.
,
Malbec
,
L.
,
Bruneaux
,
G.
,
Pickett
,
L. M.
,
Yasutomi
,
K.
, and
Martin
,
G.
,
2020
, “
Spray Penetration, Combustion, and Soot Formation Characteristics of the ECN Spray C and Spray D Injectors in Multiple Combustion Facilities
,”
Appl. Therm. Eng.
,
172
, p.
115136
.10.1016/j.applthermaleng.2020.115136
45.
Heywood
,
J. B.
,
2018
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill Education
, New York.
46.
cadence
,
2024
, “
BETA CAE Systems Website
,” BETA CAE Systems International AG, Switzerland, accessed Nov. 13, 2023, https://www.beta-cae.com/
47.
Delft High Performance Computing Centre (DHPC)
,
2022
, “
DelftBlue Supercomputer (Phase 1)
,” Delft High Performance Computing Centre, CD Delft, The Netherlands, accessed July 11, 2022, https://www.tudelft.nl/dhpc/ark/delftbluephase1
You do not currently have access to this content.