Abstract

Imbalance is a synchronous vibration and is observed at the 1× (synchronous vibration). In this study, the dynamic in-field balancing of the coaxial rotor aero-engine system, that is, the estimation of the residual imbalance, is considered with the active magnetic bearing (AMB) integration. AMB devices are built with a feedback control algorithm with a proportional-integral-derivative (PID) control. The improved influence coefficient method (IICM) is used to identify imbalance forces in low and high-pressure rotors simultaneously through simulated trial unbalance from AMB magnetic excitation. To estimate the imbalances using IICM, the system's vibratory responses in the limited regions and the simulated trial unbalances' phase and magnitudes are only needed. The coaxial-rotor system's differential equation and dynamic model are established with a squeeze-film damper (SFD) at a low-pressure rotor using force coefficients in linear form. A flexible roller bearing, including an intershaft flexible bearing (IFB), supports the high-pressure rotor at both ends accordingly. For a mathematical model, the displacement response from a coaxial rotor aero-engine with discrete unbalances for multidisk and multiplane configurations is established to illustrate the proposed technique by a finite element method (FEM). To validate the proposed technique, a specific percentage from measurement noises is considered while estimating the residual imbalances. It is found that the coaxial rotor system can smoothly cross its critical speed with minimal vibrational response upon balancing.

References

1.
Torres Cedillo
,
S. G.
, and
Bonello
,
P.
,
2016
, “
An Equivalent Unbalance Identification Method for the Balancing of Nonlinear Squeeze-Film Damped Rotordynamic Systems
,”
J. Sound Vib.
,
360
, pp.
53
73
.10.1016/j.jsv.2015.08.028
2.
Khulief
,
Y. A.
,
Oke
,
W.
, and
Mohiuddin
,
M. A.
,
2014
, “
Modally Tuned Influence Coefficients for Low-Speed Balancing of Flexible Rotors
,”
ASME J. Vib. Acoust.
,
136
(
2
), p.
024501
.10.1115/1.4025995
3.
Dyer
,
S. W.
, and
Ni
,
J.
,
2001
, “
Adaptive Influence Coefficient Control of Single-Plane Active Balancing Systems for Rotating Machinery
,”
J. Manuf. Sci. Eng
,
123
(
2
), pp.
291
298
.10.1115/1.1349554
4.
Yu
,
J. J.
,
2009
, “
Relationship of Influence Coefficients Between Static-Couple and Multiplane Methods on Two-Plane Balancing
,”
ASME J. Eng. Gas Turbines Power
,
131
(
1
), p.
012508
.10.1115/1.2968866
5.
Kang
,
Y.
,
Chang
,
Y. P.
,
Tseng
,
M. H.
,
Tang
,
P. H.
, and
Chang
,
Y. F.
,
2000
, “
Modified Approach Based on Influence Coefficient Method for Balancing Crank-Shafts
,”
J. Sound Vib.
,
234
(
2
), pp.
277
296
.10.1006/jsvi.1999.2873
6.
Kang
,
Y.
,
Liu
,
C. P.
, and
Sheen
,
G. J.
,
1996
, “
A Modified Influence Coefficient Method for Balancing Unsymmetrical Rotor-Bearing Systems
,”
J. Sound Vib.
,
194
(
2
), pp.
199
218
.10.1006/jsvi.1996.0353
7.
Kang
,
Y.
,
Lin
,
T. W.
,
Chang
,
Y. J.
,
Chang
,
Y. P.
, and
Wang
,
C. C.
,
2008
, “
Optimal Balancing of Flexible Rotors by Minimizing the Condition Number of Influence Coefficients
,”
Mech. Mach. Theory
,
43
(
7
), pp.
891
908
.10.1016/j.mechmachtheory.2007.06.005
8.
Kang
,
Y.
,
Tseng
,
M. H.
,
Wang
,
S. M.
,
Chiang
,
C. P.
, and
Wang
,
C. C.
,
2003
, “
An Accuracy Improvement for Balancing Crankshafts
,”
Mech. Mach. Theory
,
38
(
12
), pp.
1449
1467
.10.1016/S0094-114X(03)00097-1
9.
Kejian
,
J.
,
Changsheng
,
Z.
, and
Ming
,
T.
,
2012
, “
A Uniform Control Method for Imbalance Compensation and Automation Balancing in Active Magnetic Bearing-Rotor Systems
,”
ASME J. Dyn. Syst. Meas. Control.
,
134
(
2
), p.
021006
.10.1115/1.4005279
10.
Wang
,
Y.
,
Fang
,
J.
, and
Zheng
,
S.
,
2014
, “
A Field Balancing Technique Based on Virtual Trial-Weights Method for a Magnetically Levitated Flexible Rotor
,”
ASME J. Eng. Gas Turbines Power
,
136
(
9
), p.
092502
.10.1115/1.4027214
11.
Vuojolainen
,
J.
,
Jastrzebski
,
R.
, and
Pyrhonen
,
O.
,
2018
, “
Balancing of a Rotor with Active Magnetic Bearing System: Comparison of One- and Two-Plane Balancing Procedures
,”
2018 20th European Conference on Power Electronics and Applications (EPE'18 ECCE Europe)
, Riga, Latvia, Sept. 17–21, pp.
1
7
.https://ieeexplore.ieee.org/document/8515556
12.
Shin
,
K. K.
, and
Ni
,
J.
,
2001
, “
Adaptive Control of Active Balancing Systems for Speed-Varying Rotors Using Feedforward Gain Adaptation Technique
,”
ASME J. Dyn. Syst. Meas. Control
,
123
(
3
), pp.
346
352
.10.1115/1.1388015
13.
Bala Murugan
,
S.
, and
Behera
,
R. K.
,
2020
, “
Estimation of Active Magnetic Bearings (AMB) Dynamic Parameters and Residual Mass Imbalance Using FEM With PID Controller and Identification Algorithm of a Flexible Rotor System Fully Levitated on AMB
,”
ASME
Paper No. GTINDIA2019-2595.10.1115/GTINDIA2019-2595
14.
Pilkey
,
W. D.
, and
Bailey
,
J. T.
,
1979
, “
Constrained Balancing Techniques For Flexible Rotors
,”
ASME J. Mech. Des.
,
101
(
2
), pp.
304
308
.10.1115/1.3454053
15.
Pilkey
,
W. D.
,
Bailey
,
J.
, and
Smith
,
P. D.
,
1983
, “
A Computational Technique for Optimizing Correction Weights and Axial Location of Balance Planes of Rotating Shafts
,”
ASME J. Vib. Acoust.
,
105
(
1
), pp.
90
93
.10.1115/1.3269074
16.
Tessarzik
,
J. M.
,
Badgley
,
R. H.
, and
Anderson
,
W. J.
,
1972
, “
Flexible Rotor Balancing by the Exact Point-Speed Influence Coefficient Method
,”
ASME J. Manuf. Sci. Eng.
,
94
(
1
), pp.
148
158
.10.1115/1.3428104
17.
Nelson
, H. D.
,
1980
, “
A Finite Rotating Shaft Element Using Timoshenko Beam Theory
,”
ASME J. Mech. Des.
,
102
(
4
), pp.
793
803
.10.1115/1.3254824
18.
Chen
,
X.
,
Zhai
,
J.
,
Zhang
,
H.
, and
Han
,
Q.
,
2020
, “
Simulation Study on Unbalance Vibration Characteristics of Dual-Rotor System
,”
SN Appl. Sci.
,
2
(
8
), pp.
1
24
.10.1007/S42452-020-03237-5
19.
Yao
,
J.
,
Liu
,
L.
,
Yang
,
F.
,
Scarpa
,
F.
, and
Gao
,
J.
,
2018
, “
Identification and Optimization of Unbalance Parameters in Rotor-Bearing Systems
,”
J. Sound Vib.
,
431
, pp.
54
69
.10.1016/j.jsv.2018.05.050
20.
Wang
,
N.
, and
Jiang
,
D.
,
2018
, “
Vibration Response Characteristics of a Dual-Rotor With Unbalance-Misalignment Coupling Faults: Theoretical Analysis and Experimental Study
,”
Mech. Mach. Theory
,
125
, pp.
207
219
.10.1016/j.mechmachtheory.2018.03.009
21.
Yang
,
Y.
,
Cao
,
D.
,
Yu
,
T.
,
Wang
,
D.
, and
Li
,
C.
,
2016
, “
Prediction of Dynamic Characteristics of a Dual-Rotor System With Fixed Point Rubbing—Theoretical Analysis and Experimental Study
,”
Int. J. Mech. Sci.
,
115-116
, pp.
253
261
.10.1016/j.ijmecsci.2016.07.002
22.
Zhang
,
Z.
,
Wan
,
K.
,
Li
,
J.
, and
Li
,
X.
,
2018
, “
Synchronization Identification Method for Unbalance of Dual-Rotor System
,”
J. Braz. Soc. Mech. Sci. Eng.
,
40
(
4
), pp. 1–11.10.1007/s40430-018-1133-5
23.
Zeng
,
S.
, and
Wang
,
X. X.
,
1999
, “
Unbalance Identification and Filed Balancing of Dual Rotors Systems With Slightly Different Rotating Speeds
,”
J. Sound Vib.
,
220
(
2
), pp.
343
351
.10.1006/jsvi.1998.1955
24.
Liu
,
J.
,
Wang
,
C.
, and
Luo
,
Z.
,
2020
, “
Research Nonlinear Vibrations of a Dual-Rotor System With Nonlinear Restoring Forces
,”
J. Braz. Soc. Mech. Sci. Eng.
,
42
(
9
), pp. 1–20.10.1007/s40430-020-02541-w
25.
Lund
,
J. W.
, and
Tonnesen
,
J.
,
1972
, “
Analysis and Experiments on Multi-Plane Balancing of a Flexible Rotor
,”
ASME J. Eng. Ind.
,
94
(
1
), pp.
233
242
.10.1115/1.3428116
26.
Schweitzer
,
G.
, and
Maslen
,
E. H.
,
2009
,
Magnetic Bearings: Theory, Design, and Application to Rotating Machinery
,
Springer
,
Berlin, Heidelberg
, Germany.
27.
Rao
,
J. S.
,
2000
,
Vibratory Condition Monitoring of Machines
,
CRC Press/Taylor & Francis Group
,
New Delhi, India
.
28.
Nelson
,
H. D.
, and
McVaugh
,
J. M.
,
1976
, “
The Dynamics of Rotor-Bearing Systems Using Finite Elements
,”
J. Eng. Ind.
,
98
(
2
), pp.
593
600
.10.1115/1.3438942
29.
Zhang
,
J.
,
Ellis
,
J.
, and
Roberts
,
J. B.
,
1993
, “
Observations on the Nonlinear Fluid Forces in Short Cylindrical Squeeze Film Dampers
,”
ASME J. Tribol.
,
115
(
4
), pp.
692
698
.10.1115/1.2921695
30.
Karimulla
,
S.
,
Dutta
,
B. K.
, and
Gouthaman
,
G.
,
2020
, “
Experimental and Analytical Investigation of Short Squeeze-Film Damper (SFD) Under Circular-Centered Orbit (CCO) Motion
,”
J. Vib. Eng. Technol.
,
8
(
1
), pp.
215
224
.10.1007/s42417-019-00100-9
31.
Wang
,
J. K.
, and
Khonsari
,
M. M.
,
2006
, “
Application of Hopf Bifurcation Theory to Rotor-Bearing Systems With Consideration of Turbulent Effects
,”
Tribol. Int.
,
39
(
7
), pp.
701
714
.10.1016/j.triboint.2005.07.031
32.
Shaik
,
K.
, and
Dutta
,
B. K.
,
2021
, “
Stability Analysis of Horizontal Symmetric Flexible Rotor Mounted on Hydrodynamic Bearing and Squeeze Film Damper Using Analytical Approach
,”
Tribol. Int.
,
158
, pp. 1–13.10.1016/j.triboint.2021.106924
33.
Booker
,
J. F.
,
1965
, “
A Table of the Journal-Bearing Integral
,”
J. Basic Eng.
,
87
(
2
), pp.
533
535
.10.1115/1.3650600
34.
Wang
,
N.
,
Jiang
,
D.
, and
Xu
,
H.
,
2019
, “
Dynamic Characteristics Analysis of a Dual-Rotor System With Inter-Shaft Bearing
,”
Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng.
,
233
(
3
), pp.
1147
1158
.10.1177/0954410017748969
35.
Inoue
,
T.
,
Liu
,
J.
,
Ishida
,
Y.
, and
Yoshimura
,
Y.
,
2009
, “
Vibration Control and Unbalance Estimation of a Nonlinear Rotor System Using Disturbance Observer
,”
ASME J. Vib. Acoust.
,
131
(
3
), pp. 1–8.10.1115/1.3085886
36.
Vogel
,
C. R.
,
2002
, “
Computational Methods for Inverse Problems
,” Society for Industrial and Applied Mathematics, Philadelphia, PA.
37.
Bonello
,
P.
, and
Hai
,
P. M.
,
2010
, “
Computational Studies of the Unbalance Response of a Whole Aero-Engine Model With Squeeze-Film Bearings
,”
ASME J. Eng. Gas Turbines Power
,
132
(
3
), p.
032504
.10.1115/1.3159381
38.
Goldman
,
P.
, and
Muszynska
,
A.
,
1999
, “
Application of Full Spectrum to Rotating Machinery Diagnostics
,” Orbit, First Quarter, Bently Rotor Dynamics Research Corporation, Minden, NV, pp.
17
21
, Paper No.
hal-03909724
.https://hal.science/hal-03909724/document
39.
Jeung
,
S. H.
,
Andres
,
L. S.
, and
Bradley
,
G.
,
2016
, “
Forced Coefficients for a Short Length, Open Ends Squeeze Film Damper With End Grooves: Experiments and Predictions
,”
ASME J. Eng. Gas Turbines Power
,
138
(
2
), p.
022501
.10.1115/1.4031236
You do not currently have access to this content.