Abstract

Interest in using renewably produced, partially cracked ammonia in gas turbines is gaining traction, but challenges relating to emissions of NOx and unburned ammonia remain. This work progresses existing research on using hydrogen stratification to reduce NOx from ammonia/hydrogen flames by experimentally and numerically investigating the effects of also injecting nitrogen from the cracking process. It additionally assesses the NOx reduction capability of a recently developed novel swirl burner by adding hydrogen to the stratified flow to maintain the diffusive equivalence ratio at two high NO production conditions, slightly lean and stoichiometric. At slightly globally rich conditions, maintaining the diffusive equivalence ratio at 0.9 resulted in an order of magnitude reduction in NO emissions with only a 33% increase in unburned NH3, compared to a fully premixed flame with the same fuel and air flow rates. This stratified configuration was found to increase consumption of NO by NH2, likely due to flame morphology effects, while NO production from OH and HNO pathways was reduced. The reduced OH intensity was posited as the cause for increased NH3 emission. A strong emissions sensitivity to diffusive equivalence ratio was found, as the case with a stoichiometric diffusive equivalence ratio did not show such marked improvements over its corresponding premixed condition. Both stratified and premixed flames were found to be stable; however, stratification has potential to trigger instabilities at different frequencies to premixed.

References

1.
Salmon
,
N.
, and
Bãnares-Alcántara
,
R.
,
2021
, “
Green Ammonia as a Spatial Energy Vector: A Review
,”
Sustainable Energy Fuels
,
5
(
11
), pp.
2814
2839
.10.1039/D1SE00345C
2.
Valera-Medina
,
A.
,
Xiao
,
H.
,
Owen-Jones
,
M.
,
David
,
W.
, and
Bowen
,
P.
,
2018
, “
Ammonia for Power
,”
Prog. Energy Combust. Sci.
,
69
, pp.
63
102
.10.1016/j.pecs.2018.07.001
3.
Kobayashi
,
H.
,
Hayakawa
,
A.
,
Somarathne
,
K. D.
,
Kunkuma
,
A.
, and
Okafor
,
E. C.
,
2019
, “
Science and Technology of Ammonia Combustion
,”
Proc. Combust. Inst.
,
37
(
1
), pp.
109
133
.10.1016/j.proci.2018.09.029
4.
Okafor
,
E. C.
,
Naito
,
Y.
,
Colson
,
S.
,
Ichikawa
,
A.
,
Kudo
,
T.
,
Hayakawa
,
A.
, and
Kobayashi
,
H.
,
2018
, “
Experimental and Numerical Study of the Laminar Burning Velocity of CH4–NH3–Air Premixed Flames
,”
Combust. Flame
,
187
, pp.
185
198
.10.1016/j.combustflame.2017.09.002
5.
Shrestha
,
K. P.
,
Lhuillier
,
C.
,
Alves Barbosa
,
A.
,
Brequigny
,
P.
,
Contino
,
F.
,
Mounaïm-Rousselle
,
C.
,
Seidel
,
L.
, and
Mauss
,
F.
,
2021
, “
An Experimental and Modeling Study of Ammonia With Enriched Oxygen Content and Ammonia/Hydrogen Laminar Flame Speed at Elevated Pressure and Temperature
,”
Proc. Combust. Inst.
,
38
(
2
), pp.
2163
2174
.10.1016/j.proci.2020.06.197
6.
Mashruk
,
S.
,
Vigueras-Zuniga
,
M. O.
,
Tejeda-del-Cueto
,
M. E.
,
Xiao
,
H.
,
Yu
,
C.
,
Maas
,
U.
, and
Valera-Medina
,
A.
,
2022
, “
Combustion Features of CH4/NH3/H2 Ternary Blends
,”
Int. J. Hydrogen Energy
,
47
(
70
), pp.
30315
30327
.10.1016/j.ijhydene.2022.03.254
7.
Giddey
,
S.
,
Badwal
,
S.
,
Munnings
,
C.
, and
Dolan
,
M.
,
2017
, “
Ammonia as a Renewable Energy Transportation Media
,”
ACS Sustainable Chem. Eng.
,
5
(
11
), pp.
10231
10239
.10.1021/acssuschemeng.7b02219
8.
Mei
,
B.
,
Zhang
,
J.
,
Shi
,
X.
,
Xi
,
Z.
, and
Li
,
Y.
,
2021
, “
Enhancement of Ammonia Combustion With Partial Fuel Cracking Strategy: Laminar Flame Propagation and Kinetic Modeling Investigation of NH3/H2/N2/Air Mixtures Up to 10 Atm
,”
Combust. Flame
,
231
, p.
111472
.10.1016/j.combustflame.2021.111472
9.
Mashruk
,
S.
,
Kovaleva
,
M.
,
Alnasif
,
A.
,
Chong
,
C. T.
,
Hayakawa
,
A.
,
Okafor
,
E. C.
, and
Valera-Medina
,
A.
,
2022
, “
Nitrogen Oxide Emissions Analyses in Ammonia/Hydrogen/Air Premixed Swirling Flames
,”
Energy
,
260
, p.
125183
.10.1016/j.energy.2022.125183
10.
Pugh
,
D.
,
Bowen
,
P.
,
Goktepe
,
B.
,
Giles
,
A.
,
Mashruk
,
S.
,
Valera-Medina
,
A.
, and
Morris
,
S.
,
2023
, “
Influence of Steam and Elevated Ambient Conditions on N2O in a Premixed Swirling NH3/H2 Flame
,”
ASME
Paper No. GT2023-102452.10.1115/GT2023-102452
11.
Mashruk
,
S.
,
Okafor
,
E. C.
,
Kovaleva
,
M.
,
Alnasif
,
A.
,
Pugh
,
D.
,
Hayakawa
,
A.
, and
Valera-Medina
,
A.
,
2022
, “
Evolution of N2O Production at Lean Combustion Condition in NH3/H2/Air Premixed Swirling Flames
,”
Combust. Flame
,
244
, p.
112299
.10.1016/j.combustflame.2022.112299
12.
Hayakawa
,
A.
,
Hayashi
,
M.
,
Kovaleva
,
M.
,
Gotama
,
G. J.
,
Okafor
,
E. C.
,
Colson
,
S.
,
Mashruk
,
S.
,
Valera-Medina
,
A.
,
Kudo
,
T.
, and
Kobayashi
,
H.
,
2023
, “
Experimental and Numerical Study of Product Gas and N2O Emission Characteristics of Ammonia/Hydrogen/Air Premixed Laminar Flames Stabilized in a Stagnation Flow
,”
Proc. Combust. Inst.
,
39
(
2
), pp.
1625
1633
.10.1016/j.proci.2022.08.124
13.
Zhu
,
X.
,
Khateeb
,
A. A.
,
Guiberti
,
T. F.
, and
Roberts
,
W. L.
,
2021
, “
NO and OH* Emission Characteristics of Very-Lean to Stoichiometric Ammonia– Hydrogen–Air Swirl Flames
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
5155
5162
.10.1016/j.proci.2020.06.275
14.
Pugh
,
D.
,
Runyon
,
J.
,
Bowen
,
P.
,
Giles
,
A.
,
Valera-Medina
,
A.
,
Marsh
,
R.
,
Goktepe
,
B.
, and
Hewlett
,
S.
,
2021
, “
An Investigation of Ammonia Primary Flame Combustor Concepts for Emissions Reduction With OH*, NH2* and NH* Chemiluminescence at Elevated Conditions
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
6451
6459
.10.1016/j.proci.2020.06.310
15.
Franco
,
M. C.
,
Rocha
,
R. C.
,
Costa
,
M.
, and
Yehia
,
M.
,
2021
, “
Characteristics of NH3/H2/Air Flames in a Combustor Fired by a Swirl and Bluff-Body Stabilized Burner
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
5129
5138
.10.1016/j.proci.2020.06.141
16.
Mashruk
,
S.
,
Alnasif
,
A.
,
Yu
,
C.
,
Thatcher
,
J.
,
Rudman
,
J.
,
Peronski
,
L.
,
Meng-Choung
,
C.
, and
Valera-Medina
,
A.
,
2023
, “
Combustion Characteristics of a Novel Ammonia Combustor Equipped With Stratified Injection for Low Emissions
,”
J. Ammonia Energy
,
1
(
1
), pp.
21
32
.10.18573/jae.10
17.
British Standards Institute
,
1996
, “
Gas Turbines. Exhaust Gas Emission Measurement and Evaluation
,” British Standards Institute, London, UK, Standard No.
ISO 11042-1:1996
.https://www.iso.org/standard/19022.html
18.
Douglas
,
C. M.
,
Shaw
,
S. L.
,
Martz
,
T. D.
,
Steele
,
R. C.
,
Noble
,
D. R.
,
Emerson
,
B. L.
, and
Lieuwen
,
T. C.
,
2022
, “
Pollutant Emissions Reporting and Performance Considerations for Hydrogen-Hydrocarbon Fuels in Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
144
(
9
), p.
091003
.10.1115/1.4054949
19.
Mashruk
,
S.
,
2020
, “
Nitric Oxide Formation Analysis Using Chemical Reactor Modelling and Laser Induced Fluorescence Measurements on Industrial Swirl Flames
,”
Ph.D. thesis
,
Cardiff University
,
Cardiff, UK
.10.13140/RG.2.2.28297.06246/1
20.
Mashruk
,
S.
,
Xiao
,
H.
,
Pugh
,
D.
,
Chiong
,
M. C.
,
Runyon
,
J.
,
Goktepe
,
B.
,
Giles
,
A.
, and
Valera-Medina
,
A.
,
2023
, “
Numerical Analysis on the Evolution of NH2 in Ammonia/Hydrogen Swirling Flames and Detailed Sensitivity Analysis Under Elevated Conditions
,”
Combust. Sci. Technol.
,
195
(
6
), pp.
1251
1278
.10.1080/00102202.2021.1990897
21.
Chaturvedi
,
S.
,
Santhosh
,
R.
,
Mashruk
,
S.
,
Yadav
,
R.
, and
Valera-Medina
,
A.
,
2023
, “
Prediction of NOx Emissions and Pathways in Premixed Ammonia-Hydrogen-Air Combustion Using CFD-CRN Methodology
,”
J. Energy Inst.
,
111
, p.
101406
.10.1016/j.joei.2023.101406
22.
Mazzotta
,
L.
,
Lamioni
,
R.
,
D'Alessio
,
F.
,
Meloni
,
R.
,
Morris
,
S.
,
Goktepe
,
B.
,
Cerutti
,
M.
,
Romano
,
C.
,
Creta
,
F.
,
Galletti
,
C.
,
Borello
,
D.
, and
Valera-Medina
,
A.
,
2024
, “
Modelling Ammonia-Hydrogen-Air Combustion and Emission Characteristics of a Generic Swirl Burner
,”
ASME J. Eng. Gas Turbines Power
,
146
(
9
), p.
091022
.10.1115/1.4064807
23.
Oijen
,
J. V.
, and
de Goey
,
P.
,
2000
, “
Modelling of Premixed Laminar Flames Using Flamelet-Generated Manifolds
,”
Combust. Sci. Technol.
,
161
(
1
), pp.
113
137
.10.1080/00102200008935814
24.
Otomo
,
J.
,
Koshi
,
M.
,
Mitsumori
,
T.
,
Iwasaki
,
H.
, and
Yamada
,
K.
,
2018
, “
Chemical Kinetic Modeling of Ammonia Oxidation With Improved Reaction Mechanism for Ammonia/Air and Ammonia/Hydrogen/Air Combustion
,”
Int. J. Hydrogen Energy
,
43
(
5
), pp.
3004
3014
.10.1016/j.ijhydene.2017.12.066
25.
Zimont
,
V.
,
Polifke
,
W.
,
Bettelini
,
M.
, and
Weisenstein
,
W.
,
1998
, “
An Efficient Computational Model for Premixed Turbulent Combustion at High Reynolds Numbers Based on a Turbulent Flame Speed Closure
,”
ASME J. Eng. Gas Turbines Power
,
120
(
3
), pp.
526
532
.10.1115/1.2818178
26.
Mashruk
,
S.
,
Zitouni
,
S.
,
Brequigny
,
P.
,
Mounaim-Rousselle
,
C.
, and
Valera-Medina
,
A.
,
2022
, “
Combustion Performances of Premixed Ammonia/Hydrogen/Air Laminar and Swirling Flames for a Wide Range of Equivalence Ratios
,”
Int. J. Hydrogen Energy
,
47
(
97
), pp.
41170
41182
.10.1016/j.ijhydene.2022.09.165
27.
Okafor
,
E. C.
,
Tsukamoto
,
M.
,
Hayakawa
,
A.
,
Somarathne
,
K. A.
,
Kudo
,
T.
,
Tsujimura
,
T.
, and
Kobayashi
,
H.
,
2021
, “
Influence of Wall Heat Loss on the Emission Characteristics of Premixed Ammonia-Air Swirling Flames Interacting With the Combustor Wall
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
5139
5146
.10.1016/j.proci.2020.06.142
28.
Nicoud
,
F.
, and
Poinsot
,
T.
,
2005
, “
Thermoacoustic Instabilities: Should the Rayleigh Criterion Be Extended to Include Entropy Changes?
,”
Combust. Flame
,
142
(
1–2
), pp.
153
159
.10.1016/j.combustflame.2005.02.013
You do not currently have access to this content.