Abstract

In this work, an existing single nozzle FLOX® (FLOX®, WS Wärmeprozesstechnik GmbH, Renningen, Germany) burner was modified with a fuel nozzle that was installed concentrically inside the outer air nozzle and was arranged in two different configurations. In the first, nonpremixed case, the fuel and air nozzles were flush at the nozzle exit. In the second, technically premixed case, the fuel nozzle terminated 50 mm below the air nozzle exit. A third, fully premixed case was also achieved by injecting fuel into the air delivery line via an inline-mixer upstream of the nozzle exit. Additionally, measurements were performed using fuel nozzles with two different sizes. For all these cases, hydrogen volume fraction in the fuel was varied from 0 to 100% at a constant equivalence ratio and thermal power. The resulting flames were characterized using two-dimensional OH-chemiluminescence measurements. In addition, load-flexibility was investigated on the 100 vol. % H2 case by varying the equivalence ratio. Some selected conditions were further investigated using particle imaging velocimetry (PIV) to obtain velocity fields. The experimental results demonstrated a strong influence of nozzle configurations (mixedness), equivalence ratio, and H2-content on flame shapes. First of all, increasing H2-content reduced the flame liftoff height (LOH) above the nozzle exit for all three configurations. Second, for the cases with 100 vol. % H2 and independent of the nozzle configuration, the liftoff height increased drastically when Φ was reduced to below 0.3 while the flame became visibly unstable. Overall, increasing level of mixedness generally caused the flame to stabilize closer to the nozzle exit. A remarkable decrease in the liftoff height was observed for the technically premixed case compared to the nonpremixed case. Increasing H2-content from 0 to 100 vol. % also increased the measured NOx emission by nearly a factor of 4, which was also strongly affected by the level of mixedness. Experimental results from this work are being used in a joint effort to validate numerical models for jet-stabilized hydrogen combustion.

References

1.
FLOX®
,
WS Wärmeprozesstechnik GmbH
,
Renningen, Germany
.
2.
Arora
,
N. K.
, and
Mishra
,
I.
,
2021
, “
COP26: More Challenges Than Achievements
,”
Environ. Sustainability
,
4
(
4
), pp.
585
588
.10.1007/s42398-021-00212-7
3.
Haglind
,
F.
,
Hasselrot
,
A.
, and
Singh
,
R.
,
2006
, “
Potential of Reducing the Environmental Impact of Aviation by Using Hydrogen Part II: Aero Gas Turbine Design
,”
Aeronaut. J.
,
110
(
1110
), pp.
541
552
.10.1017/S0001924000028967
4.
Du Toit
,
M. H.
,
Avdeenkov
,
A. V.
, and
Bessarabov
,
D.
,
2018
, “
Reviewing H2 Combustion: A Case Study for Non-Fuel-Cell Power Systems and Safety in Passive Autocatalytic Recombiners
,”
Energy Fuels
,
32
(
6
), pp.
6401
6422
.10.1021/acs.energyfuels.8b00724
5.
Shih
,
H.-Y.
, and
Liu
,
C.-R.
,
2014
, “
A Computational Study on the Combustion of Hydrogen/Methane Blended Fuels for a Micro Gas Turbines
,”
Int. J. Hydrogen Energy
,
39
(
27
), pp.
15103
15115
.10.1016/j.ijhydene.2014.07.046
6.
Noble
,
D.
,
Wu
,
D.
,
Emerson
,
B.
,
Sheppard
,
S.
,
Lieuwen
,
T.
, and
Angello
,
L.
,
2021
, “
Assessment of Current Capabilities and Near-Term Availability of Hydrogen-Fired Gas Turbines Considering a Low-Carbon Future
,”
ASME J. Eng. Gas Turbines Power
,
143
(
4
), p.
041002
.10.1115/1.4049346
7.
McKinsey and Company for the Clean Sky 2 and Fuel Cells and Hydrogen 2 Joint Undertaking
, 2020, “
Hydrogen-Powered Aviation: A Fact-Based Study of Hydrogen Technology, Economics, and Climate Impact by 2050
,” Publications Office, Luxembourg.https://op.europa.eu/en/publication-detail/-/publication/55fe3eb1-cc8a-11ea-adf7-01aa75ed71a1/language-en
8.
Wünning
,
J. A.
, and
Wünning
,
J. G.
,
1992
, “
Burners for Flameless Oxidation With Low NOx Formation Even at Maximum Air Preheat
,”
Gaswärme Int.
,
41
(
10
), pp.
438
444.
9.
Wünning
,
J. A.
, and
Wünning
,
J. G.
,
1997
, “
Flameless Oxidation to Reduce Thermal NO-Formation
,”
Prog. Energy Combust. Sci.
,
23
(
1
), pp.
81
94
.10.1016/S0360-1285(97)00006-3
10.
Lückerath
,
R.
,
Meier
,
W.
, and
Aigner
,
M.
,
2008
, “
FLOX® Combustion at High Pressure With Different Fuel Compositions
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
011505
.10.1115/1.2749280
11.
Lammel
,
O.
,
Stöhr
,
M.
,
Kutne
,
P.
,
Dem
,
C.
,
Meier
,
W.
, and
Aigner
,
M.
,
2012
, “
Experimental Analysis of Confined Jet Flames by Laser Measurement Techniques
,”
ASME J. Eng. Gas Turbines Power
,
134
(
4
), p.
041506
.10.1115/1.4004733
12.
Roediger
,
T.
,
Lammel
,
O.
,
Aigner
,
M.
,
Beck
,
C.
, and
Krebs
,
W.
,
2013
, “
Part-Load Operation of a Piloted FLOX® Combustion System
,”
ASME J. Eng. Gas Turbines Power
,
135
(
3
), p.
031503
.10.1115/1.4007754
13.
Cavaliere
,
A.
, and
De Joannon
,
M.
,
2004
, “
Mild Combustion
,”
Prog. Energy Combust. Sci.
,
30
(
4
), pp.
329
366
.10.1016/j.pecs.2004.02.003
14.
Severin
,
M.
,
Lammel
,
O.
, and
Meier
,
W.
,
2022
, “
Laser Diagnostic Investigation of a Confined Premixed Turbulent Jet Flame Stabilized by Recirculation
,”
Combust. Flame
,
243
, p.
112061
.10.1016/j.combustflame.2022.112061
15.
Chiesa
,
P.
,
Lozza
,
G.
, and
Mazzocchi
,
L.
,
2005
, “
Using Hydrogen as Gas Turbine Fuel
,”
ASME J. Eng. Gas Turbines Power
,
127
(
1
), pp.
73
80
.10.1115/1.1787513
16.
Rashwan
,
S. S.
,
Nemitallah
,
M. A.
, and
Habib
,
M. A.
,
2016
, “
Review on Premixed Combustion Technology: Stability, Emission Control, Applications, and Numerical Case Study
,”
Energy Fuels
,
30
(
12
), pp.
9981
10014
.10.1021/acs.energyfuels.6b02386
17.
Jadidi
,
M.
,
Moghtadernejad
,
S.
, and
Dolatabadi
,
A.
,
2015
, “
A Comprehensive Review on Fluid Dynamics and Transport of Suspension/Liquid Droplets and Particles in High-Velocity Oxygen-Fuel (HVOF) Thermal Spray
,”
Coatings
,
5
(
4
), pp.
576
645
.10.3390/coatings5040576
18.
Lammel
,
O.
,
Schütz
,
H.
,
Schmitz
,
G.
,
Lückerath
,
R.
,
Stöhr
,
M.
,
Noll
,
B.
,
Aigner
,
M.
,
Hase
,
M.
, and
Krebs
,
W.
,
2010
, “
FLOX® Combustion at High Power Density and High Flame Temperatures
,”
ASME J. Eng. Gas Turbines Power
,
132
(
12
), p.
121503
.10.1115/1.4001825
19.
Schütz
,
H.
,
Lückerath
,
R.
,
Kretschmer
,
T.
,
Noll
,
B.
, and
Aigner
,
M.
,
2008
, “
Analysis of the Pollutant Formation in the FLOX® Combustion
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
011503
.10.1115/1.2747266
20.
Haj Ayed
,
A.
,
Kusterer
,
K.
,
Funke
,
H. H.-W.
,
Keinz
,
J.
,
Striegan
,
C.
, and
Bohn
,
D.
,
2015
, “
Experimental and Numerical Investigations of the Dry-low-NOx Hydrogen Micromix Combustion Chamber of an Industrial Gas Turbine
,”
Propul. Power Res.
,
4
(
3
), pp.
123
131
.10.1016/j.jppr.2015.07.005
21.
Bower
,
H. E.
,
Schwärzle
,
A.
,
Grimm
,
F.
,
Zornek
,
T.
, and
Kutne
,
P.
,
2020
, “
Experimental Analysis of a Micro Gas Turbine Combustor Optimized for Flexible Operation With Various Gaseous Fuel Compositions
,”
ASME J. Eng. Gas Turbines Power
,
142
(
3
), p.
031015
.10.1115/1.4044901
22.
Sharma
,
S. D.
, and
Ahmed
,
M. R.
,
1998
, “
Mixing of Coaxial Jets With Small Annular Area in a Short Duct
,”
AIAA J.
,
36
(
9
), pp.
1740
1742
.10.2514/2.7548
23.
Yin
,
Z.
,
Boxx
,
I.
,
Stöhr
,
M.
,
Lammel
,
O.
, and
Meier
,
W.
,
2016
, “
Investigation of Confined Turbulent Jet Flames Using kHz-Rate Diagnostics
,”
AIAA
Paper No. 2016-0185. 10.2514/6.2016-0185
24.
Barlow
,
R. S.
,
Dibble
,
R. W.
,
Chen
,
J.-Y.
, and
Lucht
,
R. P.
,
1990
, “
Effect of Damköhler Number on Superequilibrium OH Concentration in Turbulent Nonpremixed Jet Flames
,”
Combust. Flame
,
82
(
3–4
), pp.
235
251
.10.1016/0010-2180(90)90001-8
25.
LaVision GmbH
,
2005
, “
DaVis Flowmaster Manual
,”
LaVision GmbH
,
Göttingen, Germany
.
26.
Severin
,
M.
,
Lammel
,
O.
,
Ax
,
H.
,
Lückerath
,
R.
, and
Aigner
,
M.
,
2017
, “
High Momentum Jet Flames at Elevated Pressure, B: Detailed Investigation of Flame Stabilization With Simultaneous PIV and OH LIF
,” ASME Paper No. GT2017-64556.
27.
Leister,
2010
, “
Leister Process Technologies, Kaegiswil, Switzerland
,” Leister AG, Kaegiswil, Switzerland, accessed Nov. 5, http://www.leister.com
28.
Hermanns
,
R. T. E.
,
Kortendijk
,
J. A.
,
Bastiaans
,
R. J. M.
, and
De Goey
,
L. P. H.
,
2007
, “
Laminar Burning Velocities of Methane-Hydrogen-Air Mixtures.
10.13140/2.1.3850.9129
29.
Dai
,
P.
,
Chen
,
Z.
, and
Chen
,
S.
,
2014
, “
Ignition of Methane With Hydrogen and Dimethyl Ether Addition
,”
Fuel
,
118
, pp.
1
8
.10.1016/j.fuel.2013.10.048
30.
Yin
,
Z.
,
Boxx
,
I.
, and
Meier
,
W.
,
2017
, “
Influence of Self-Sustained Jet Oscillation on a Confined Turbulent Flame Near Lean Blow-Out
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3773
3781
.10.1016/j.proci.2016.07.026
31.
Baukal
,
C. E.
, and
Eleazer
,
P. B.
,
1998
, “
Quantifying NOx for Industrial Combustion Processes
,”
J. Air Waste Manage. Assoc.
,
48
(
1
), pp.
52
58
.10.1080/10473289.1998.10463664
You do not currently have access to this content.