Abstract

A flow field analysis of a realistic, integrated, multidisk boundary layer pump as is necessary for investigating the reasons for typically quoted low efficiencies in such pumps is described. The study focuses on the three-dimensional RANS solutions of a water boundary layer pump model created to replicate a design by Morris, 1973, which consists of 170 disks and a volute channel. A baseline study is performed to investigate the rotor-only performance after which a volute alone is separately simulated to identify the performance and losses in each as separate systems. Thereafter, an integrated model is characterized across mass flow rates and rotational speeds. The flow fields of all three models are discussed and the results of the integrated model are compared to the experimental data. The results from the model with the rotor only confirm the typically made claim that the efficiency of the rotor in a boundary layer pump possesses relatively high values which in this case is ∼87% at the design point, reinforcing results from previous studies that the rotor assembly is not the cause of inefficiency. The volute on its own indicated a hydraulic efficiency of around 97%. However, the integrated model yielded a rotor efficiency of around 74\% and an overall pump efficiency of 51% at the design point, clearly outlining the fact that the effect of the volute integrated with the rotor is the reason for both the rotor and pump efficiency degradation. The reason for this drop in efficiency is discussed in detail by highlighting the change in the flow topologies. The insights into the flow field and the identification of the reason for inefficiencies using a separated component analysis approach provide directions for avenues in which design improvements would need to be attempted.

References

1.
Armstrong
,
J. H.
,
1952
, “
An Investigation of the Performance of a Modified Tesla Turbine
,”
M.Sc. thesis
,
Georgia Institute of Technology
,
Atlanta, GA
.http://hdl.handle.net/1853/19556
2.
Rice
,
W.
,
1963
, “
An Analytical and Experimental Investigation of Multiple Disk Pumps and Compressors
,”
ASME J. Eng. Gas Turbines Power
,
85
(
3
), pp.
191
198
.10.1115/1.3675253
3.
Ji
,
F.
,
Bao
,
Y.
,
Zhou
,
Y.
,
Du
,
F.
,
Zhu
,
H.
,
Zhao
,
S.
,
Li
,
G.
,
Zhu
,
X.
, and
Ding
,
S.
,
2019
, “
Investigation on Performance and Implementation of Tesla Turbine in Engine Waste Heat Recovery
,”
Energy Convers. Manage.
,
179
, pp.
326
338
.10.1016/j.enconman.2018.10.071
4.
Heng
,
Y.
,
Han
,
Y.
,
Zhang
,
H.
,
Zhang
,
W.
,
Bois
,
G.
,
Jiang
,
Q.
,
Wang
,
Z.
, and
Liu
,
X.
,
2020
, “
Tesla Bladed Pump (Disc Bladed Pump) Preliminary Experimental Performance Analysis
,”
Energies
,
13
(
18
), p.
4873
.10.3390/en13184873
5.
Talluri
,
L.
,
Dumont
,
O.
,
Manfrida
,
G.
,
Lemort
,
V.
, and
Fiaschi
,
D.
,
2020
, “
Experimental Investigation of an Organic Rankine Cycle Tesla Turbine Working With R1233zd(E)
,”
Appl. Therm. Eng.
,
174
, p.
115293
.10.1016/j.applthermaleng.2020.115293
6.
Galindo
,
Y.
,
Reyes-Nava
,
J. A.
,
Hernández
,
Y.
,
Ibáñez
,
G.
,
Moreira-Acosta
,
J.
, and
Beltrán
,
A.
,
2021
, “
Effect of Disc Spacing and Pressure Flow on a Modifiable Tesla Turbine: Experimental and Numerical Analysis
,”
Appl. Therm. Eng.
,
192
, p.
116792
.10.1016/j.applthermaleng.2021.116792
7.
Wang
,
B.
,
Okamoto
,
K.
,
Yamaguchi
,
K.
, and
Teramoto
,
S.
,
2014
, “
Loss Mechanisms in Shear-Force Pump With Multiple Corotating Disks
,”
ASME J. Fluids Eng.
,
136
(
8
), p. 081101.10.1115/1.4026585
8.
Medvitz
,
R. B.
,
Boger
,
D. A.
,
Izraelev
,
V.
,
Rosenberg
,
G.
, and
Paterson
,
E. G.
,
2011
, “
Computational Fluid Dynamics Design and Analysis of a Passively Suspended Tesla Pump Left Ventricular Assist Device
,”
Artif. Organs
,
35
(
5
), pp.
522
533
.10.1111/j.1525-1594.2010.01087.x
10.
Hasinger
,
S. H.
, and
Kehrt
,
L. G.
,
1963
, “
Investigation of a Shear-Force Pump
,”
ASME J. Eng. Power
,
85
(
3
), pp.
201
206
.10.1115/1.3675258
11.
Rice
,
W.
,
1965
, “
An Analytical and Experimental Investigation of Multiple-Disk Turbines
,”
ASME J. Eng. Gas Turbines Power
,
87
(
1
), pp.
29
36
.10.1115/1.3678134
12.
William Beans
,
E.
,
1966
, “
Investigation Into the Performance Characteristics of a Friction Turbine
,”
J. Spacecr. Rockets
,
3
(
1
), pp.
131
134
.10.2514/3.28398
13.
Morris
,
J.
,
1973
, “
Performance of Multiple Disk Rotor Pumps With Varied Interdisk Spacings
,”
David W. Taylor Naval Ship Research and Development Center
,
Bethesda, MD
, Report No. ADA088010.https://apps.dtic.mil/sti/citations/ADA088010
14.
Romanin
,
V. D.
,
2012
, “
Theory and Performance of Tesla Turbines
,”
Ph.D. thesis
,
University of California
,
Berkeley, CA
.https://escholarship.org/uc/item/6584x24x
15.
Krishnan
,
V. G.
,
Romanin
,
V.
,
Carey
,
V. P.
, and
Maharbiz
,
M. M.
,
2013
, “
Design and Scaling of Microscale Tesla Turbines
,”
J. Micromech. Microeng.
,
23
(
12
), p.
125001
.10.1088/0960-1317/23/12/125001
16.
Holland
,
K.
,
2015
, “
Design, Construction, and Testing of a Tesla Turbine
,”
M.Sc. thesis
,
Laurentian University, Sudbury, ON, Canada
.https://zone.biblio.laurentian.ca/bitstream/10219/2533/1/Final%20Thesis%20Approved%20kris_holland.pdf
17.
Song
,
J.
,
Xiao
,
D. R.
,
Xue
,
S. L.
,
Chun
,
W. G.
, and
Ming
,
M. Z.
,
2018
, “
One-Dimensional Model Analysis and Performance Assessment of Tesla Turbine
,”
Appl. Therm. Eng.
,
134
, pp.
546
554
.10.1016/j.applthermaleng.2018.02.019
18.
Katopodes
,
N. D.
,
2019
, “
Ideal Fluid Flow
,”
Butterworth Heinemann
,
Kidlington, Oxford, UK
.
19.
Menter
,
F. R.
,
Sechner
,
R.
, and
Matyushenko
,
A.
,
2021
, “
Best Practice: RANS Turbulence Modeling in Ansys CFD
,”
ANSYS St. Petersburg, Russia, Report No. 1.0
.https://www.ansys.com/en-in/resource-center/technical-paper/best-practice-rans-turbulence-modeling-in-ansyscfd
20.
Omidi
,
M.
,
Liu
,
S.-J.
,
Mohtaram
,
S.
,
Lu
,
H.-T.
, and
Zhang
,
H.-C.
,
2019
, “
Improving Centrifugal Compressor Performance by Optimizing the Design of Impellers Using Genetic Algorithm and Computational Fluid Dynamics Methods
,”
Sustainability
,
11
(
19
), p.
5409
.10.3390/su11195409
21.
Boyce
,
M. P.
,
2002
,
Gas Turbine Engineering Handbook
, 2nd ed.,
Butterworth-Heinemann
,
Boston, MA
.
22.
Stepanoff
,
A. J.
,
1957
,
Centrifugal and Axial Flow Pumps: Theory, Design, and Application
,
Wiley
,
New York
.
23.
Knapp
,
A.
,
Böhle
,
M.
, and
Roclawski
,
H.
,
2017
, “
Investigation of Different Design Methods of Volutes With Circular Cross Sections for a Single-Stage Centrifugal Pump
,”
Open Archives of the 17th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC)
, Maui, HI, Dec. 16–21, Paper No. hal-02980987.https://hal.science/hal-02980987/document
24.
ASME,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p. 078001.10.1115/1.2960953
25.
ANSYS,
2013
,
ANSYS CFX-Pre User's Guide
,
ANSYS
,
Canonsburg, PA
.
26.
Khait
,
A.
,
Noskov
,
A.
,
Alekhin
,
V.
, and
Bianco
,
V.
,
2018
, “
Analysis of the Local Entropy Generation in a Double-Circuit Vortex Tube
,”
Appl. Therm. Eng.
,
130
, pp.
1391
1403
.10.1016/j.applthermaleng.2017.11.136
27.
Bejan
,
A.
,
1996
, “
Entropy Generation Minimization: The New Thermodynamics of Finite-Size Devices and Finite-Time Processes
,”
J. Appl. Phys.
,
79
(
3
), pp.
1191
1218
.10.1063/1.362674
28.
Izraelev
,
V.
,
Weiss
,
W. J.
,
Fritz
,
B.
,
Newswanger
,
R. K.
,
Paterson
,
E. G.
,
Snyder
,
A.
, and
Medvitz
,
R. B.
, et al.,
2009
, “
A Passively-Suspended Tesla Pump Left Ventricular Assist Device
,”
ASAIO J.
,
55
(
6
), pp.
556
561
.10.1097/MAT.0b013e3181bae73e
You do not currently have access to this content.