Abstract

Recent efforts in numerical methods to study hydrogen combustion have allowed the development of affordable and reliable strategies that can reproduce the main structure of the flame. Although this objective represents a vital goal of the design process of a new combustor, properly estimating the emission remains an aspect that must be further investigated. In fact, due to the lack of experimental data, few numerical works addressed the evaluation of NOx emissions in hydrogen-fueled rigs. The present work aims to study turbulent combustion and NOx emission formation through different numerical approaches on a laboratory-scale atmospheric rig. The burner consists of a swirl-stabilized, technically premixed hydrogen-air flame, with detailed NOx emissions estimated via an experimental campaign at the Technische Universität Berlin (TUB). A first estimation is obtained through a high-fidelity simulation performed in order to assess the capability of a computationally expensive strategy to estimate NOx emissions. A species transport simulation adopting a thickened flame model in which NOx chemistry is included in the chemical mechanism is carried out. After that, a cost-efficient method is explored, allowing a quick assessment of the NOx. With this approach, named LES-to-RANS (L2R), time average fields are evaluated from an large eddy simulation (LES) species transport simulation with simplified chemistry. In particular, the NOx equations are performed on a frozen Reynolds-averaged Navier–Stokes (RANS) framework as a postprocessed stage. The capabilities of the model are then tested under two different scenarios: adiabatic and non-adiabatic wall temperature. The computational accuracy of each approach is compared and discussed, with emphasis on computational cost.

References

1.
Wang
,
L. K.
,
Pereira
,
N. C.
,
Hung
,
Y.-T.
, and
Li
,
K. H.
,
2004
,
Air Pollution Control Engineering
, Vol.
1
,
Springer
, Berlin.
2.
Reichel
,
T. G.
,
Terhaar
,
S.
, and
Paschereit
,
O.
,
2015
, “
Increasing Flashback Resistance in Lean Premixed Swirl-Stabilized Hydrogen Combustion by Axial Air Injection
,”
ASME J. Eng. Gas Turbines Power
,
137
(
7
), p.
071503
.10.1115/1.4029119
3.
Sánchez
,
A. L.
, and
Williams
,
F. A.
,
2014
, “
Recent Advances in Understanding of Flammability Characteristics of Hydrogen
,”
Prog. Energy Combust. Sci.
,
41
(
1
), pp.
1
55
.10.1016/j.pecs.2013.10.002
4.
Glarborg
,
P.
,
Miller
,
J. A.
,
Ruscic
,
B.
, and
Klippenstein
,
S. J.
,
2018
, “
Modeling Nitrogen Chemistry in Combustion
,”
Prog. Energy Combust. Sci.
,
67
, pp.
31
68
.10.1016/j.pecs.2018.01.002
5.
Rørtveit
,
G. J.
,
Hustad
,
J. E.
,
Li
,
S.-C.
, and
Williams
,
F. A.
,
2002
, “
Effects of Diluents on NOx Formation in Hydrogen Counterflow Flames
,”
Combust. Flame
,
130
(
1–2
), pp.
48
61
.10.1016/S0010-2180(02)00362-0
6.
Zeldvich
,
Y. B.
,
1946
, “
The Oxidation of Nitrogen in Combustion and Explosions
,”
J. Acta Physicochim.
,
21
, p.
577
.https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/34215
7.
Malte
,
P.
, and
Pratt
,
D.
,
1974
, “
The Role of Energy-Releasing Kinetics in NOx Formation: Fuel-Lean, Jet-Stirred CO-Air Combustion
,”
Combust. Sci. Technol.
,
9
(
5–6
), pp.
221
231
.10.1080/00102207408960360
8.
Fenimore
,
C. P.
,
1971
, “
Formation of Nitric Oxide in Premixed Hydrocarbon Flames
,”
Symposium (International) on Combustion
, Salt Lake City, UT, Aug. 23–29, Vol.
13
, pp.
373
380
.10.1016/S0082-0784(71)80040-1
9.
Purohit
,
A. L.
,
Nalbandyan
,
A.
,
Malte
,
P. C.
, and
Novosselov
,
I. V.
,
2021
, “
NNH Mechanism in low-NOx Hydrogen Combustion: Experimental and Numerical Analysis of Formation Pathways
,”
Fuel
,
292
, p.
120186
.10.1016/j.fuel.2021.120186
10.
ANSYS
,
2023
, “
Fluent 23.1 Theory Guide
,” Ansys, Canonsburg, PA.
11.
Biagioli
,
F.
, and
Güthe
,
F.
,
2007
, “
Effect of Pressure and Fuel–Air Unmixedness on NOx Emissions From Industrial Gas Turbine Burners
,”
Combust. Flame
,
151
(
1–2
), pp.
274
288
.10.1016/j.combustflame.2007.04.007
12.
Paccati
,
S.
,
Mazzei
,
L.
,
Andreini
,
A.
,
Patil
,
S.
,
Shrivastava
,
S.
,
Bessette
,
D.
,
Arguinzoni
,
C.
, and
Yadav
,
R.
,
2021
, “
Scale Resolving CFD Investigations of Aerothermal Field and Emissions of a Lean Burn Aeroengine Combustor
,”
ASME
Paper No. GT2021-59387.10.1115/GT2021-59387
13.
Meloni
,
R.
,
Nassini
,
P.
, and
Andreini
,
A.
,
2022
, “
Model Development for the Simulation of the Hydrogen Addition Effect Onto the NOx Emission of an Industrial Combustor
,”
Fuel
,
328
, p.
125278
.10.1016/j.fuel.2022.125278
14.
Beige
,
A. A.
, and
Mardani
,
A.
,
2023
, “
An Investigation on Flame Structure and NOx Formation in a Gas Turbine Model Combustor Using Large Eddy Simulation
,”
Phys. Fluids
,
35
(
7
), p.
075133
.10.1063/5.0155974
15.
Capurso
,
T.
,
Laera
,
D.
,
Riber
,
E.
, and
Cuenot
,
B.
,
2023
, “
Nox Pathways in Lean Partially Premixed Swirling h2-Air Turbulent Flame
,”
Combust. Flame
,
248
, p.
112581
.10.1016/j.combustflame.2022.112581
16.
Amerighi
,
M.
,
Andreini
,
A.
,
Reichel
,
T.
,
Tanneberger
,
T.
, and
Paschereit
,
C.
,
2024
, “
Les Investigation of a Swirl Stabilized Technically Premixed Hydrogen Flame With FGM and Tfm Models
,”
Appl. Therm. Eng.
,
247
, p.
122944
.10.1016/j.applthermaleng.2024.122944
17.
Reichel
,
T. G.
,
Terhaar
,
S.
, and
Paschereit
,
C. O.
,
2013
, “
Flow Field Manipulation by Axial Air Injection to Achieve Flashback Resistance and Its Impact on Mixing Quality
,”
AIAA
Paper No. 2013-2603.10.2514/6.2013-2603
18.
Reichel
,
T. G.
,
Goeckeler
,
K.
, and
Paschereit
,
O.
,
2015
, “
Investigation of Lean Premixed Swirl-Stabilized Hydrogen Burner With Axial Air Injection Using OH-PLIF Imaging
,”
ASME J. Eng. Gas Turbines Power
,
137
(
11
), p.
111513
.10.1115/1.4031181
19.
Boivin
,
P.
,
Sánchez
,
A. L.
, and
Williams
,
F. A.
,
2013
, “
Four-Step and Three-Step Systematically Reduced Chemistry for Wide-Range H2–Air Combustion Problems
,”
Combust. Flame
,
160
(
1
), pp.
76
82
.10.1016/j.combustflame.2012.09.014
20.
Amerighi
,
M.
,
Nassini
,
P. C.
,
Andreini
,
A.
,
Orsino
,
S.
,
Verma
,
I.
,
Yadav
,
R.
, and
Patil
,
S.
,
2023
, “
Assessment of Flamelet Generated Manifold Approach With Inclusion of Stretch Effects of Pure Hydrogen Flames
,”
ASME
Paper No. GT2023-102651.10.1115/GT2023-102651
21.
Lilly
,
D. K.
,
1992
, “
A Proposed Modification of the Germano Closure Method
,”
Phys. Fluids
,
4
(
3
), pp.
633
635
.10.1063/1.858280
22.
Colin
,
O.
,
Ducros
,
F.
,
Veynante
,
D.
, and
Poinsot
,
T.
,
2000
, “
A Thickened Flame Model for Large Eddy Simulations of Turbulent Premixed Combustion
,”
Phys. Fluids
,
12
(
7
), pp.
1843
1863
.10.1063/1.870436
23.
Li
,
J.
,
Zhao
,
Z.
,
Kazakov
,
A.
, and
Dryer
,
F. L.
,
2004
, “
An Updated Comprehensive Kinetic Model of Hydrogen Combustion
,”
Int. J. Chem. Kinet.
,
36
(
10
), pp.
566
575
.10.1002/kin.20026
24.
Popp
,
S.
,
Kuenne
,
G.
,
Janicka
,
J.
, and
Hasse
,
C.
,
2019
, “
An Extended Artificial Thickening Approach for Strained Premixed Flames
,”
Combust. Flame
,
206
, pp.
252
265
.10.1016/j.combustflame.2019.04.047
25.
Detomaso
,
N.
,
Hok
,
J.-J.
,
Dounia
,
O.
,
Laera
,
D.
, and
Poinsot
,
T.
,
2023
, “
A Generalization of the Thickened Flame Model for Stretched Flames
,”
Combust. Flame
,
258
, p.
113080
.10.1016/j.combustflame.2023.113080
26.
Celik
,
I. B.
,
Cehreli
,
Z. N.
, and
Yavuz
,
I.
,
2005
, “
Index of Resolution Quality for Large Eddy Simulations
,”
ASME J. Fluids Eng.
,
127
(
5
), pp.
949
958
.10.1115/1.1990201
27.
Bilger
,
R.
,
1989
, “
The Structure of Turbulent Nonpremixed Flames
,”
Symposium (International) on Combustion
, Seattle, WA, pp.
475
488
.10.1016/S0082-0784(89)80054-2
You do not currently have access to this content.