Abstract

With the hot stage of a modern aeroengine operating with combustor firing temperatures well beyond the melting point of the nickel superalloys from which the turbine blades are manufactured, developments to the methods of cooling of these components are required to advance performance. Double-wall, effusion systems exhibit a quasi-transpiration like cooling effect with recent work demonstrating their exceptional cooling performance. Such systems are characterized by two walls, one with impingement holes and the other with film cooling holes, that are mechanically and thermally connected via pedestals. However, manufacturing such geometries from single-crystal nickel superalloys remains a significant barrier to entry into service. This paper presents a method of manufacturing double-wall effusion specimens from a nickel superalloy commonly used in modern commercial high-pressure turbine components. The method maintains the mechanical integrity associated with nickel superalloys. Details of the method are presented alongside X-ray and GOM laser scan data of a flat-plate test article that demonstrates the success of the manufacturing process. Aerothermal testing of the specimen in a bespoke recirculating wind-tunnel facility was undertaken in which the overall cooling effectiveness of the system is obtained. The results reaffirm the excellent cooling performance of double-wall, effusion systems and further validate the manufacturing methodology as a method by which to realize enhanced cooling effectiveness in service.

References

1.
Mouritz
,
A. P.
,
2012
, “
Superalloys for Gas Turbine Engines
,”
Introduction to Aerospace Materials
,
Elsevier
, Cambridge, UK, pp.
251
267
.
2.
Frasier
,
D. J.
,
Whetstone
,
J. R.
,
Harris
,
K.
,
Erickson
,
G. L.
, and
Schwer
,
R. E.
,
1990
, “
Process and Alloy Optimization for CMSX-4 Superalloy Single Crystal Airfoils
,”
High Temperature Materials for Power Engineering
, Cannon-Muskegon, Liege, Belgium, Sept. 24–27, pp.
1281
1300
.
3.
Eckert
,
E. R. G.
, and
Esgar
,
J. B.
,
1951
,
Survey of Advantages and Problems Associated With Transpiration Cooling and Film Cooling of Gas-Turbine Blades
, Elsevier, Amsterdam, The Netherlands, p.
40
.
4.
Esgar
,
J. B.
,
1952
, “
An Analytical Method for Evaluating Factors Affecting Application of Transpiration Cooling to Gas Turbine Blades
,” NACA, Washington, DC, Report No.
NACA-RM-E50K15
, p.
71
.https://digital.library.unt.edu/ark:/67531/metadc59331/
5.
Cerri
,
G.
,
Giovannelli
,
A.
,
Battisti
,
L.
, and
Fedrizzi
,
R.
,
2007
, “
Advances in Effusive Cooling Techniques of Gas Turbines
,”
Appl. Therm. Eng.
,
27
(
4
), pp.
692
698
.10.1016/j.applthermaleng.2006.10.012
6.
van de Noort
,
M.
,
Murray
,
A. V.
, and
Ireland
,
P. T.
,
2022
, “
Low Order Heat & Mass Flow Network Modelling for Quasi-Transpiration Cooling Systems
,”
ASME
Paper No. GT2022-81780.10.1115/GT2022-81780
7.
van de Noort
,
M.
, and
Ireland
,
P.
,
2022
, “
A Low Order Flow Network Model for Double-Wall Effusion Cooling Systems
,”
Int. J. Turbomach. Propuls. Power
,
7
(
1
), p.
5
.10.3390/ijtpp7010005
8.
Courtis
,
M.
,
Murray
,
A.
,
Coulton
,
B.
,
Ireland
,
P.
, and
Mayo
,
I.
,
2021
, “
Influence of Spanwise and Streamwise Film Hole Spacing on Adiabatic Film Effectiveness for Effusion-Cooled Gas Turbine Blades
,”
Int. J. Turbomach. Propuls. Power
,
6
(
3
), p.
37
.10.3390/ijtpp6030037
9.
Courtis
,
M.
,
Skamniotis
,
C.
,
Cocks
,
A.
, and
Ireland
,
P.
,
2022
, “
Coupled Aerothermal-Mechanical Analysis in Single Crystal Double Wall Transpiration Cooled Gas Turbine Blades With a Large Film Hole Density
,”
Appl. Therm. Eng.
,
219
, p.
119329
.10.1016/j.applthermaleng.2022.119329
10.
Ngetich
,
G. C.
,
Ireland
,
P. T.
,
Murray
,
A. V.
, and
Romero
,
E.
,
2019
, “
A 3D Conjugate Approach for Analysing a Double-Walled Effusion-Cooled Turbine Blade
,”
ASME J. Turbomach.
,
141
, p. 011002.10.1115/1.4041379
11.
Ngetich
,
G. C.
,
Ireland
,
P. T.
, and
Romero
,
E.
,
2019
, “
Study of Film Cooling Effectiveness on a Double-Walled Effusion-Cooled Turbine Blade in a High-Speed Flow Using Pressure Sensitive Paint
,”
ASME
Paper No. GT2019-90545.10.1115/GT2019-90545
12.
Murray
,
A. V.
,
Ireland
,
P. T.
, and
Romero
,
E.
,
2020
, “
Experimental and Computational Methods for the Evaluation of Double-Wall, Effusion Cooling Systems
,”
ASME J. Turbomach.
,
142
(
11
), p.
111003
.10.1115/1.4047384
13.
Murray
,
A. V.
,
Ireland
,
P. T.
, and
Romero
,
E.
,
2021
, “
An Experimentally Validated Low-Order Model of the Thermal Response of Double-Wall Effusion Cooling Systems for High-Pressure Turbine Blades
,”
ASME J. Turbomach.
,
143
(
11
), p.
111015
.10.1115/1.4050976
14.
Murray
,
A. V.
,
Ireland
,
P. T.
, and
Rawlinson
,
A. J.
,
2017
, “
An Integrated Conjugate Computational Approach for Evaluating the Aerothermal and Thermomechanical Performance of Double-Wall Effusion Cooled Systems
,”
ASME
Paper No. GT2017-64711.10.1115/GT2017-64711
15.
Murray
,
A. V.
,
Ireland
,
P. T.
, and
Romero
,
E.
,
2019
, “
Development of a Steady-State Experimental Facility for the Analysis of Double-Wall Effusion Cooling Geometries
,”
ASME J. Turbomach.
,
141
(
4
), p.
041008
.10.1115/1.4041751
16.
Pu
,
J.
,
Zhang
,
T.
, and
Wang
,
J.
,
2022
, “
Experimental Study of Cooling Air Effect on Overall Cooling of Laminated Configuration at a Turbine Vane End-Wall
,”
Case Stud. Therm. Eng.
,
32
, p.
101890
.10.1016/j.csite.2022.101890
17.
Pu
,
J.
,
Zhou
,
W.
,
Wang
,
J.
, and
Song
,
W.
, Aug.
2022
, “
Visualization and Quantitation of Unsteadiness of Film Cooling Near Stagnation Line of a Double-Wall Cooled Vane Leading Edge
,”
J. Visualization
,
26
(
1
), pp.
113
129
.10.1007/s12650-022-00870-7
18.
Chen
,
Y.
,
Wei
,
H.
, and
Zu
,
Y. Q.
,
2018
, “
Experimental Study on the Conjugate Heat Transfer of Double-Wall Turbine Blade Components With/Without Pins
,”
Therm. Sci. Eng. Prog.
,
8
, pp.
448
456
.10.1016/j.tsep.2018.09.010
19.
Elmukashfi
,
E. M. A.
,
Murray
,
A. V.
,
Ireland
,
P. T.
, and
Cocks
,
A. C. F.
,
2020
, “
Analysis of the Thermomechanical Stresses in Double-Wall Effusion Cooled Systems
,”
ASME J. Turbomach.
,
142
(
5
), p.
15
.10.1115/1.4046268
20.
Skamniotis
,
C.
, and
Cocks
,
A. C. F.
,
2022
, “
Thermal and Centrifugal Stresses in Curved Double Wall Transpiration Cooled Components With Temperature Dependent Thermoelastic Properties
,”
Int. J. Solids Struct.
,
234–235
, p.
111273
.10.1016/j.ijsolstr.2021.111273
21.
Skamniotis
,
C.
, and
Cocks
,
A. C. F.
,
2021
, “
Minimising Stresses in Double Wall Transpiration Cooled Components for High Temperature Applications
,”
Int. J. Mech. Sci.
,
189
, p.
105983
.10.1016/j.ijmecsci.2020.105983
22.
Skamniotis
,
C.
, and
Cocks
,
A. C. F.
,
2021
, “
2D and 3D Thermoelastic Phenomena in Double Wall Transpiration Cooling Systems for Gas Turbine Blades and Hypersonic Flight
,”
Aerosp. Sci. Technol.
,
113
, p.
106610
.10.1016/j.ast.2021.106610
23.
Skamniotis
,
C. G.
, and
Cocks
,
A. C. F.
,
2021
, “
On the Creep-Fatigue Design of Double Skin Transpiration Cooled Components Towards Hotter Turbine Cycle Temperatures
,”
ASME
Paper No. GT2021-58836.10.1115/GT2021-58836
24.
Skamniotis
,
C.
,
Courtis
,
M.
, and
Cocks
,
A. C. F.
,
2021
, “
Multiscale Analysis of Thermomechanical Stresses in Double Wall Transpiration Cooling Systems for Gas Turbine Blades
,”
Int. J. Mech. Sci.
,
207
, p.
106657
.10.1016/j.ijmecsci.2021.106657
25.
Chai
,
L.
,
Hou
,
J.
, and
Lang
,
B.
,
2018
, “
Effect of Base Metal Misorientation on Single-Crystal Superalloy Transient Liquid-Phase Bonded Joints
,”
J. Mater. Eng. Perform.
,
27
(
11
), pp.
5718
5724
.10.1007/s11665-018-3641-y
26.
Barlow
,
M. C.
,
Loersch
,
J. F.
, and
Basche
,
M.
,
1980
, “
In Situ Interlayer Formation for Transient Liquid Phase Diffusion Bonding
,” U.S. Patent No.
4,208,222
.https://patents.google.com/patent/US4208222A/en
27.
Burke
,
M. A.
,
Freyer
,
P. D.
,
Hebbar
,
M. A.
,
Seth
,
B. B.
,
Swartzbeck
,
G. W.
, and
Zegar
,
T. W.
,
2001
, “
Turbine Blades Made From Multiple Single Crystal Cast Superalloy Segments
,” U.S. Patent No.
6,331,217
.https://patentscope.wipo.int/search/en/detail.jsf?docId=WO1999021680
28.
Cook
,
G. O.
, and
Sorensen
,
C. D.
,
2011
, “
Overview of Transient Liquid Phase and Partial Transient Liquid Phase Bonding
,”
J. Mater. Sci.
,
46
(
16
), pp.
5305
5323
.10.1007/s10853-011-5561-1
29.
Jacobson
,
D. M.
, and
Humpston
,
G.
,
2005
,
Principles of Brazing
,
ASM International
,
Materials Park, OH
.
30.
Abas
,
R. A.
,
Hayashi
,
M.
, and
Seetharaman
,
S.
,
2007
, “
Thermal Diffusivity Measurements of CMSX-4 Alloy by the Laser-Flash Method
,”
Int. J. Thermophys.
,
28
(
1
), pp.
109
122
.10.1007/s10765-007-0163-5
31.
Holgate
,
N. E.
,
Ireland
,
P. T.
, and
Romero
,
E.
,
2018
, “
The Effects of Combustor Cooling Features on Nozzle Guide Vane Film Cooling Experiments
,”
ASME J. Turbomach.
,
141
(
1
), p. 011005.10.1115/1.4041467
32.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
33.
Howatson
,
A. M.
,
Lund
,
P. G.
, and
Todd
,
J. D.
,
2009
,
Engineering Tables and Data
, 3rd ed.,
Department of Engineering Science, University of Oxford
, Oxford, UK.
34.
Moustapha
,
H.
,
Zelesky
,
M. F.
,
Baines
,
N. C.
, and
Japikse
,
D.
,
2003
,
Axial and Radial Turbines
,
Concepts NREC
, Ann Arbor, MI.
35.
Azad
,
G. S.
,
Han
,
J.-C.
,
Tend
,
S.
, and
Boyle
,
R. J.
,
2000
, “
Heat Transfer and Pressure Distributions on a Gas Turbine Blade Tip
,”
ASME J. Turbomach.
,
122
(
4
), pp.
717
724
.10.1115/1.1308567
You do not currently have access to this content.