Abstract

This paper extends a previous study on the unsteady aerodynamics of vibrating airfoils in the low reduced frequency regime to the case of complex modes, where the phase of the different points of the same airfoil is not constant. A complex mode-shape can be expressed as the combination of two rigid body modes shifted 90 deg. Therefore, the stability of such modes is more complex to predict than that of the so-called real modes. The aerodynamic work-per-cycle has been deconstructed into its fundamental components, and its dependence on the reduced frequency described. The three distinct contributions to the work-per-cycle of a complex mode have been analyzed theoretically and numerically. First, the mean pressure yields a constant contribution to the work-per-cycle that is independent of the interblade phase angle (IBPA) and the reduced frequency. This term scales with the aerodynamic loading of the airfoil and is null for nonlifting airfoils. Second, the contribution of the two fundamental modes, whose mean value is proportional to the reduced frequency. Finally, the cross works of a fundamental mode over the displacements of the other. The low reduced frequency theory predicts that this term is independent of the frequency and symmetric with the interblade phase angle. The latter has been confirmed using linearized Navier–Stokes simulations, but the former has a constant term, as predicted by the theory, plus a small variation with the frequency that has been associated with acoustic resonances.

References

1.
Corral
,
R.
,
Gallardo
,
J. M.
, and
Vasco
,
C.
,
2007
, “
Aeroelastic Stability of Welded-In-Pair Low Pressure Turbine Rotor Blades: A Comparative Study Using Linear Methods
,”
ASME J. Turbomach.
,
129
(
1
), pp.
72
83
.10.1115/1.2366512
2.
Rice
,
T.
,
Bell
,
D.
, and
Singh
,
G.
,
2009
, “
Identification of the Stability Margin Between Safe Operation and the Onset of Blade Flutter
,”
ASME J. Turbomach.
,
131
(
1
), p.
011009
.10.1115/1.2812339
3.
Hall
,
K. C.
, and
Lorence
,
C. B.
,
1993
, “
Calculation of Three-Dimensional Unsteady Flows in Turbomachinery Using the Linearized Harmonic Euler Equations
,”
ASME J. Turbomach.
,
115
(
4
), pp.
800
809
.10.1115/1.2929318
4.
Corral
,
R.
,
Escribano
,
A.
,
Gisbert
,
F.
,
Serrano
,
A.
, and
Vasco
,
C.
,
2003
, “
Validation of a Linear Multigrid Accelerated Unstructured Navier–Stokes Solver for the Computation of Turbine Blades on Hybrid Grids
,”
AIAA
Paper No. 2003-3326.10.2514/6.2003-3326
5.
Kersken
,
H.
,
Frey
,
C.
,
Voigt
,
C.
, and
Ashcroft
,
G.
,
2012
, “
Time-Linearized and Time-Accurate 3D RANS Methods for Aeroelastic Analysis in Turbomachinery
,”
ASME J. Turbomach.
,
134
(
5
), p.
051024
.10.1115/1.4004749
6.
Hall
,
K. C.
,
Thomas
,
J. P.
, and
Clark
,
W. S.
,
2002
, “
Computation of Unsteady Nonlinear Flows in Cascades Using a Harmonic Balance Technique
,”
AIAA J.
,
40
(
5
), pp.
879
886
.10.2514/2.1754
7.
Frey
,
C.
,
Ashcroft
,
G.
,
Kersken
,
H.
, and
Voigt
,
C.
,
2014
, “
A Harmonic Balance Technique for Multistage Turbomachinery Applications
,”
ASME
Paper No. GT2014-25230.10.1115/GT2014-25230
8.
Crespo
,
J.
,
Corral
,
R.
, and
Pueblas
,
J.
,
2016
, “
An Implicit Harmonic Balance Method in Graphics Processing Units for Oscillating Blades
,”
ASME J. Turbomach.
,
138
(
3
), p.
031001
.10.1115/1.4031918
9.
Corral
,
R.
, and
Vega
,
A.
,
2016
, “
The Low Reduced Frequency Limit of Vibrating Airfoils—Part I: Theoretical Analysis
,”
ASME J. Turbomach.
,
138
(
2
), p.
021004
.10.1115/1.4031776
10.
Vega
,
A.
, and
Corral
,
R.
,
2016
, “
The Low Reduced Frequency Limit of Vibrating Airfoils—Part II: Numerical Experiments
,”
ASME J. Turbomach.
,
128
(
2
), p.
021005
.10.1115/1.4031777
11.
Corral
,
R.
, and
Vega
,
A.
,
2016
, “
Physics of Vibrating Turbine Airfoils at Low Reduced Frequency
,”
AIAA J. Propul. Power
,
32
(
2
), pp.
325
336
.10.2514/1.B35572
12.
Corral
,
R.
, and
Vega
,
A.
,
2017
, “
Quantification of the Influence of Unsteady Aerodynamic Loading on the Damping Characteristics of Oscillating Airfoils at Low Reduced Frequency—Part I: Theoretical Support
,”
ASME J. Turbomach.
,
139
(
3
), p.
031009
.10.1115/1.4034976
13.
Vega
,
A.
, and
Corral
,
R.
,
2017
, “
Quantification of the Influence of Unsteady Aerodynamic Loading on the Damping Characteristics of Oscillating Airfoils at Low Reduced Frequency—Part II: Numerical Verification
,”
ASME J. Turbomach.
,
139
(
3
), p.
031010
.10.1115/1.4034978
14.
Kielb
,
R.
,
Barter
,
J.
,
Chernycheva
,
O.
, and
Fransson
,
T.
,
2004
, “
Flutter of Low Pressure Turbine Blades With Cyclic Symmetric Modes: A Preliminary Design Method
,”
ASME J. Turbomach.
,
126
(
2
), pp.
306
309
.10.1115/1.1650380
15.
Wu
,
X.
,
Vahdati
,
M.
,
Schipani
,
C.
, and
Imregun
,
M.
,
2007
, “
Analysis of Low-Pressure Turbine Flutter for Different Shroud Interfaces
,”
ASME
Paper No. GT2007-27377.10.1115/GT2007-27377
16.
Larrieta
,
O.
,
Alonso
,
R.
,
Perez-Escobar
,
O.
,
Eryilmaz
,
I.
, and
Pachidis
,
V.
,
2020
, “
Design Space Exploration of Turbine Blade Shroud Interlock for Flutter Stability
,”
ASME
Paper No. GT2020-16040.10.1115/GT2020-16040
17.
Rozendaal
,
A. V.
,
Torkaman
,
A.
, and
Fiebiger
,
S. W.
,
2021
, “
Numerical Investigation on the Influence of Tip Shroud Design Characteristics on the Aerodynamic Damping of a Last Stage Blade
,”
ASME
Paper No. GT2021-58766.10.1115/GT2021-58766
18.
Panovsky
,
J.
, and
Kielb
,
R. E.
,
2000
, “
Flutter Mechanisms in Low Pressure Turbine Blades
,”
ASME J. Eng. Gas Turbines Power
,
122
(
1
), pp.
89
98
.10.1115/1.483180
19.
Burgos
,
M. A.
,
Contreras
,
J.
, and
Corral
,
R.
,
2011
, “
Efficient Edge-Based Rotor/Stator Interaction Method
,”
AIAA J.
,
49
(
1
), pp.
19
31
.10.2514/1.44512
20.
Corral
,
R.
,
Beloki
,
J.
,
Calza
,
P.
, and
Elliot
,
R.
,
2019
, “
Flutter Generation and Control Using Mistuning in a Turbine Rotating Rig
,”
AIAA J.
,
57
(
2
), pp.
782
795
.10.2514/1.J056943
21.
Burgos
,
M.
,
Chia
,
J.
,
Corral
,
R.
, and
Lopez
,
C.
,
2010
, “
Rapid Meshing of Turbomachinery Rows Using Semi-Unstructured Multi-Block Conformal Grids
,”
Eng. Comput.
,
26
(
4
), pp.
351
362
.10.1007/s00366-009-0169-7
22.
Bendiksen
,
O.
, and
Friedmann
,
P.
,
1980
, “
Coupled Bending-Torsion Flutter in Cascades
,”
AIAA J.
,
18
(
2
), pp.
194
201
.10.2514/3.50748
23.
Corral
,
R.
, and
Vega
,
A.
,
2018
, “
Conceptual Flutter Analysis of Labyrinth Seals Using Analytical Models—Part I: Theoretical Background
,”
ASME J. Turbomach.
,
140
(
10
), p.
121006
.10.1115/1.4041373
You do not currently have access to this content.