Abstract

The physical–chemical surrogate models for S-8, Jet-A, and RP-3 fuels to capture their physical and kinetics properties have been developed in this study. n-dodecane (nC12H26), 2,5-dimethylhexane (C8H18-25), and toluene (C6H5CH3) were chosen as candidate surrogate components and formulated by the function group based surrogate fuel methodology. Some important physical properties and spray characteristics for S-8, Jet-A, and RP-3 surrogate models were validated. The results indicate that present surrogate models can well emulate various physical properties to accurately reproduce the spray characteristics. Then, a minimal and high-precision surrogate skeletal mechanism that can be suitable for computational fluid dynamics (CFD) simulations was developed and validated against some fundamental combustion experiments for each surrogate component. Furthermore, the performances of surrogate models that contain the surrogate formulation and associated skeletal mechanisms were validated against the experimental data on ignition delay times (IDTs), species concentration profiles, and laminar flame speeds (Su0) in a wide range of conditions. Finally, the surrogate fuels were used to combustion CFD simulations to model the spray combustion process in a constant volume combustion chamber. It can be seen that the agreements between the simulation and experiment in fundamental and spray combustion characteristics are reasonably good, which proves that present surrogate models are accurate and robust to be applied in CFD simulations.

References

1.
Riebl
,
S.
,
Braun-Unkhoff
,
M.
, and
Riedel
,
U.
,
2017
, “
A Study on the Emissions of Alternative Aviation Fuels
,”
ASME J. Eng. Gas Turbines Power
,
139
(
8
), p. 081503.10.1115/1.4035816
2.
Braun-Unkhoff
,
M.
, and
Riedel
,
U.
,
2015
, “
Alternative Fuels in Aviation
,”
CEAS Aeronaut. J.
,
6
(
1
), pp.
83
93
.10.1007/s13272-014-0131-2
3.
Pitz
,
W. J.
,
Cernansky
,
N. P.
,
Dryer
,
F. L.
,
Egolfopoulos
,
F.
,
Farrell
,
J.
,
Friend
,
D.
, and
Pitsch
,
H.
,
2007
, “
Development of an Experimental Database and Chemical Kinetic Models for Surrogate Gasoline Fuels
,”
SAE
Paper No. 0175.10.4271/2007-01-0175
4.
Pitz
,
W. J.
, and
Mueller
,
C. J.
,
2011
, “
Recent Progress in the Development of Diesel Surrogate Fuels
,”
Prog. Energy Combust. Sci.
,
37
(
3
), pp.
330
350
.10.1016/j.pecs.2010.06.004
5.
Bai
,
Y.
,
Wang
,
Y.
,
Wang
,
X.
,
Zhou
,
Q.
, and
Duan
,
Q.
,
2021
, “
Development of Physical-Chemical Surrogate Models and Skeletal Mechanism for the Spray and Combustion Simulation of RP-3 Kerosene Fuels
,”
Energy
,
215
, p.
119090
.10.1016/j.energy.2020.119090
6.
Qian
,
Y.
,
Yu
,
L.
,
Li
,
Z.
,
Zhang
,
Y.
,
Xu
,
L.
,
Zhou
,
Q.
,
Han
,
D.
, and
Lu
,
X.
,
2018
, “
A New Methodology for Diesel Surrogate Fuel Formulation: Bridging Fuel Fundamental Properties and Real Engine Combustion Characteristics
,”
Energy
,
148
, pp.
424
447
.10.1016/j.energy.2018.01.181
7.
Kook
,
S.
, and
Pickett
,
L. M.
,
2012
, “
Liquid Length and Vapor Penetration of Conventional, Fischer–Tropsch, Coal-Derived, and Surrogate Fuel Sprays at High-Temperature and High-Pressure Ambient Conditions
,”
Fuel
,
93
, pp.
539
548
.10.1016/j.fuel.2011.10.004
8.
Liu
,
T.
,
Fu
,
W.
,
Yi
,
B.
,
Song
,
L.
,
Lin
,
Q.
, and
Zhao
,
D.
,
2019
, “
Experimental Investigations of Kerosene Sprays in Pressurized Evaporating Environments
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
233
(
3
), pp.
413
427
.10.1177/0957650918787375
9.
Huber
,
M.
,
Smith
,
B.
,
Ott
,
L.
, and
Bruno
,
T.
,
2008
, “
Surrogate Mixture Model for the Thermophysical Properties of Synthetic Aviation Fuel S-8: Explicit Application of the Advanced Distillation Curve
,”
Energy Fuels
,
22
(
2
), pp.
1104
1114
.10.1021/ef700562c
10.
Huber
,
M.
,
Lemmon
,
E.
, and
Bruno
,
T.
,
2010
, “
Surrogate Mixture Models for the Thermophysical Properties of Aviation Fuel Jet-A
,”
Energy Fuels
,
24
(
6
), pp.
3565
3571
.10.1021/ef100208c
11.
Bruno
,
T. J.
, and
Huber
,
M. L.
,
2010
, “
Evaluation of the Physicochemical Authenticity of Aviation Kerosene Surrogate Mixtures. Part 2: Analysis and Prediction of Thermophysical Properties
,”
Energy Fuels
,
24
(
8
), pp.
4277
4284
.10.1021/ef1004978
12.
Slavinskaya
,
N. A.
,
Zizin
,
A.
, and
Aigner
,
M.
,
2010
, “
On Model Design of a Surrogate Fuel Formulation
,”
ASME J. Eng. Gas Turbines Power
,
132
(
11
), p.
111501
.10.1115/1.4000593
13.
Zhong
,
F.
,
Fan
,
X.
,
Yu
,
G.
,
Li
,
J.
, and
Sung
,
C.-J.
,
2009
, “
Heat Transfer of Aviation Kerosene at Supercritical Conditions
,”
J. Thermophys. Heat Transfer
,
23
(
3
), pp.
543
550
.10.2514/1.41619
14.
Xu
,
K.
, and
Meng
,
H.
,
2015
, “
Analyses of Surrogate Models for Calculating Thermophysical Properties of Aviation Kerosene RP-3 at Supercritical Pressures
,”
Sci. China Technol. Sci.
,
58
(
3
), pp.
510
518
.10.1007/s11431-014-5752-5
15.
Shen
,
Y.
,
Liu
,
Y.-B.
, and
Cao
,
B.-Y.
,
2021
, “
C4+ Surrogate Models for Thermophysical Properties of Aviation Kerosene RP-3 at Supercritical Pressures
,”
Energy Fuels
,
35
(
9
), pp.
7858
7865
.10.1021/acs.energyfuels.1c00326
16.
Farrell
,
J.
,
Cernansky
,
N.
,
Dryer
,
F.
,
Friend
,
D. G.
,
Hergart
,
C.
,
Law
,
C.
,
McDavid
,
R.
, et al.,
2007
, “
Development of an Experimental Database and Kinetic Models for Surrogate Diesel Fuels
,”
SAE
Paper No. 0201. 10.4271/0201
17.
Yu
,
J.
,
Ju
,
Y.
, and
Gou
,
X.
,
2016
, “
Surrogate Fuel Formulation for Oxygenated and Hydrocarbon Fuels by Using the Molecular Structures and Functional Groups
,”
Fuel
,
166
, pp.
211
218
.10.1016/j.fuel.2015.10.085
18.
Yu
,
J.
, and
Gou
,
X.
,
2018
, “
Comprehensive Surrogate for Emulating Physical and Kinetic Properties of Jet Fuels
,”
J. Propul. Power
,
34
(
3
), pp.
679
689
.10.2514/1.B36766
19.
Yu
,
J.
, and
Gou
,
X.
,
2019
, “
Surrogate Fuels Formulation for FACE Gasoline Using the Nuclear Magnetic Resonance Spectroscopy
,”
ASME J. Eng. Gas Turbines Power
,
141
(
4
), p.
041019
.10.1115/1.4040808
20.
Jameel
,
A. G. A.
,
Naser
,
N.
,
Issayev
,
G.
,
Touitou
,
J.
,
Ghosh
,
M. K.
,
Emwas
,
A.-H.
,
Farooq
,
A.
, et al.,
2018
, “
A Minimalist Functional Group (MFG) Approach for Surrogate Fuel Formulation
,”
Combust. Flame
,
192
, pp.
250
271
.10.1016/j.combustflame.2018.01.036
21.
Narayanaswamy
,
K.
,
Pitsch
,
H.
, and
Pepiot
,
P.
,
2016
, “
A Component Library Framework for Deriving Kinetic Mechanisms for Multi-Component Fuel Surrogates: Application for Jet Fuel Surrogates
,”
Combust. Flame
,
165
, pp.
288
309
.10.1016/j.combustflame.2015.12.013
22.
Naik
,
C. V.
,
Puduppakkam
,
K. V.
,
Modak
,
A.
,
Meeks
,
E.
,
Wang
,
Y. L.
,
Feng
,
Q.
, and
Tsotsis
,
T. T.
,
2011
, “
Detailed Chemical Kinetic Mechanism for Surrogates of Alternative Jet Fuels
,”
Combust. Flame
,
158
(
3
), pp.
434
445
.10.1016/j.combustflame.2010.09.016
23.
Dooley
,
S.
,
Won
,
S. H.
,
Jahangirian
,
S.
,
Ju
,
Y.
,
Dryer
,
F. L.
,
Wang
,
H.
, and
Oehlschlaeger
,
M. A.
,
2012
, “
The Combustion Kinetics of a Synthetic Paraffinic Jet Aviation Fuel and a Fundamentally Formulated, Experimentally Validated Surrogate Fuel
,”
Combust. Flame
,
159
(
10
), pp.
3014
3020
.10.1016/j.combustflame.2012.04.010
24.
Mawid
,
M.
,
2007
, “
Development of a Detailed Chemical Kinetic Mechanism for Mixtures of JP-8 Fuel and Fischer-Tropsch-Based Synthetic Jet Fuel
,”
AIAA
Paper No. 2007-5668.10.2514/6.2007-5668
25.
Kim
,
D.
,
Martz
,
J.
, and
Violi
,
A.
,
2014
, “
A Surrogate for Emulating the Physical and Chemical Properties of Conventional Jet Fuel
,”
Combust. Flame
,
161
(
6
), pp.
1489
1498
.10.1016/j.combustflame.2013.12.015
26.
Kim
,
D.
, and
Violi
,
A.
,
2018
, “
Hydrocarbons for the Next Generation of Jet Fuel Surrogates
,”
Fuel
,
228
, pp.
438
444
.10.1016/j.fuel.2018.04.112
27.
Dooley
,
S.
,
Won
,
S. H.
,
Heyne
,
J.
,
Farouk
,
T. I.
,
Ju
,
Y.
,
Dryer
,
F. L.
,
Kumar
,
K.
, et al.,
2012
, “
The Experimental Evaluation of a Methodology for Surrogate Fuel Formulation to Emulate Gas Phase Combustion Kinetic Phenomena
,”
Combust. Flame
,
159
(
4
), pp.
1444
1466
.10.1016/j.combustflame.2011.11.002
28.
Dooley
,
S.
,
Won
,
S. H.
,
Chaos
,
M.
,
Heyne
,
J.
,
Ju
,
Y.
,
Dryer
,
F. L.
,
Kumar
,
K.
, et al.,
2010
, “
A Jet Fuel Surrogate Formulated by Real Fuel Properties
,”
Combust. Flame
,
157
(
12
), pp.
2333
2339
.10.1016/j.combustflame.2010.07.001
29.
Malewicki
,
T.
,
Gudiyella
,
S.
, and
Brezinsky
,
K.
,
2013
, “
Experimental and Modeling Study on the Oxidation of Jet a and the n-Dodecane/Iso-Octane/n-Propylbenzene/1,3,5-Trimethylbenzene Surrogate Fuel
,”
Combust. Flame
,
160
(
1
), pp.
17
30
.10.1016/j.combustflame.2012.09.013
30.
Zheng
,
D.
,
Yu
,
W.-M.
, and
Zhong
,
B.-J.
,
2015
, “
RP-3 Aviation Kerosene Surrogate Fuel and the Chemical Reaction Kinetic Model
,”
Acta Physico-Chim. Sin.
,
31
, pp.
636
642
.10.3866/PKU.WHXB201501231
31.
Xu
,
J. Q.
,
Guo
,
J. J.
,
Liu
,
A. K.
,
Wang
,
J. L.
,
Tan
,
N. X.
, and
Li
,
X. Y.
,
2015
, “
Construction of Autoignition Mechanisms for the Combustion of RP-3 Surrogate Fuel and Kinetics Simulation
,”
Acta Physico-Chim. Sin.
,
31
(
4
), pp.
643
652
.10.3866/PKU.WHXB201503022
32.
Yi
,
R.
,
Chen
,
X.
, and
Chen
,
C.
,
2019
, “
Surrogate for Emulating Physicochemical and Kinetics Characteristics of RP-3 Aviation Fuel
,”
Energy Fuels
,
33
(
4
), pp.
2872
2879
.10.1021/acs.energyfuels.8b03999
33.
Mao
,
Y.
,
Yu
,
L.
,
Wu
,
Z.
,
Tao
,
W.
,
Wang
,
S.
,
Ruan
,
C.
,
Zhu
,
L.
, and
Lu
,
X.
,
2019
, “
Experimental and Kinetic Modeling Study of Ignition Characteristics of RP-3 Kerosene Over Low-to-High Temperature Ranges in a Heated Rapid Compression Machine and a Heated Shock Tube
,”
Combust. Flame
,
203
, pp.
157
169
.10.1016/j.combustflame.2019.02.015
34.
Li
,
A.
,
Zhang
,
Z.
,
Cheng
,
X.
,
Lu
,
X.
,
Zhu
,
L.
, and
Huang
,
Z.
,
2020
, “
Development and Validation of Surrogates for RP-3 Jet Fuel Based on Chemical Deconstruction Methodology
,”
Fuel
,
267
, p.
116975
.10.1016/j.fuel.2019.116975
35.
Zeng
,
W.
,
Li
,
H-X.
,
Chen
,
B-D.
, and
Ma
,
H-A.
,
2015
, “
Experimental and Kinetic Modeling Study of Ignition Characteristics of Chinese RP-3 Kerosene
,”
Combust. Sci. Technol.
,
187
(
3
), pp.
396
409
.10.1080/00102202.2014.948620
36.
Liu
,
Y.-X.
,
Richter
,
S.
,
Naumann
,
C.
,
Braun-Unkhoff
,
M.
, and
Tian
,
Z.-Y.
,
2019
, “
Combustion Study of a Surrogate Jet Fuel
,”
Combust. Flame
,
202
, pp.
252
261
.10.1016/j.combustflame.2019.01.022
37.
Lu
,
T.
, and
Law
,
C. K.
,
2005
, “
A Directed Relation Graph Method for Mechanism Reduction
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
1333
1341
.10.1016/j.proci.2004.08.145
38.
Valorani
,
M.
,
Creta
,
F.
,
Goussis
,
D. A.
,
Lee
,
J. C.
, and
Najm
,
H. N.
,
2006
, “
An Automatic Procedure for the Simplification of Chemical Kinetic Mechanisms Based on CSP
,”
Combust. Flame
,
146
(
1–2
), pp.
29
51
.10.1016/j.combustflame.2006.03.011
39.
Tomlin
,
A. S.
,
Pilling
,
M. J.
,
Turányi
,
T.
,
Merkin
,
J. H.
, and
Brindley
,
J.
,
1992
, “
Mechanism Reduction for the Oscillatory Oxidation of Hydrogen: Sensitivity and Quasi-Steady-State Analyses
,”
Combust. Flame
,
91
(
2
), pp.
107
130
.10.1016/0010-2180(92)90094-6
40.
Chang
,
Y.
,
Jia
,
M.
,
Li
,
Y.
,
Liu
,
Y.
,
Xie
,
M.
,
Wang
,
H.
, and
Reitz
,
R. D.
,
2015
, “
Development of a Skeletal Mechanism for Diesel Surrogate Fuel by Using a Decoupling Methodology
,”
Combust. Flame
,
162
(
10
), pp.
3785
3802
.10.1016/j.combustflame.2015.07.016
41.
Zhong
,
B.-J.
, and
Peng
,
H.-S.
,
2019
, “
Development of a Skeletal Mechanism for Aviation Kerosene Surrogate Fuel
,”
J. Propul. Power
,
35
(
3
), pp.
645
651
.10.2514/1.B37421
42.
Fang
,
X.
,
Huang
,
Z.
,
Qiao
,
X.
,
Ju
,
D.
, and
Bai
,
X.
,
2018
, “
Skeletal Mechanism Development for a 3-Component Jet Fuel Surrogate Using Semi-Global Sub-Mechanism Construction and Mechanism Reduction
,”
Fuel
,
229
, pp.
53
59
.10.1016/j.fuel.2018.04.159
43.
Chen
,
X.
,
Khani
,
E.
, and
Chen
,
C.
,
2016
, “
A Unified Jet Fuel Surrogate for Droplet Evaporation and Ignition
,”
Fuel
,
182
, pp.
284
291
.10.1016/j.fuel.2016.05.114
44.
Yu
,
W.
,
Zhao
,
F.
,
Yang
,
W.
,
Tay
,
K.
, and
Xu
,
H.
,
2018
, “
Development of an Optimization Methodology for Formulating Both Jet Fuel and Diesel Fuel Surrogates and Their Associated Skeletal Oxidation Mechanisms
,”
Fuel
,
231
, pp.
361
372
.10.1016/j.fuel.2018.05.121
45.
Widegren
,
J. A.
, and
Bruno
,
T. J.
,
2008
, “
Thermal Decomposition Kinetics of the Aviation Turbine Fuel Jet A
,”
Ind. Eng. Chem. Res.
,
47
(
13
), pp.
4342
4348
.10.1021/ie8000666
46.
Violi
,
A.
,
Yan
,
S.
,
Eddings
,
E. G.
,
Sarofim
,
A. F.
,
Granata
,
S.
,
Faravelli
,
T.
, and
Ranzi
,
E.
,
2002
, “
Experimental Formulation and Kinetic Model for JP-8 Surrogate Mixtures
,”
Combust. Sci. Technol.
,
174
(
11–12
), pp.
399
417
.10.1080/00102200215080
47.
Dryer
,
F. L.
,
Jahangirian
,
S.
,
Dooley
,
S.
,
Won
,
S. H.
,
Heyne
,
J.
,
Iyer
,
V. R.
,
Litzinger
,
T. A.
, and
Santoro
,
R. J.
,
2014
, “
Emulating the Combustion Behavior of Real Jet Aviation Fuels by Surrogate Mixtures of Hydrocarbon Fluid Blends: Implications for Science and Engineering
,”
Energy Fuels
,
28
(
5
), pp.
3474
3485
.10.1021/ef500284x
48.
Dooley
,
S.
,
Heyne
,
J.
,
Won
,
S. H.
,
Dievart
,
P.
,
Ju
,
Y.
, and
Dryer
,
F. L.
,
2014
, “
Importance of a Cycloalkane Functionality in the Oxidation of a Real Fuel
,”
Energy Fuels
,
28
(
12
), pp.
7649
7661
.10.1021/ef5008962
49.
Won
,
S. H.
,
Dooley
,
S.
,
Veloo
,
P. S.
,
Wang
,
H.
,
Oehlschlaeger
,
M. A.
,
Dryer
,
F. L.
, and
Ju
,
Y.
,
2014
, “
The Combustion Properties of 2, 6, 10-Trimethyl Dodecane and a Chemical Functional Group Analysis
,”
Combust. Flame
,
161
(
3
), pp.
826
834
.10.1016/j.combustflame.2013.08.010
50.
Huber
,
M. L.
,
2007
,
NIST Thermophysical Properties of Hydrocarbon Mixtures Database
,
US Department of Commerce
, Gaithersburg, MD.
51.
Outcalt
,
S.
,
Laesecke
,
A.
, and
Freund
,
M. B.
,
2009
, “
Density and Speed of Sound Measurements of Jet A and S-8 Aviation Turbine Fuels
,”
Energy Fuels
,
23
(
3
), pp.
1626
1633
.10.1021/ef800888q
52.
Fortin
,
T. J.
, and
Outcalt
,
S.
,
2010
, “
Density, Speed of Sound, and Viscosity Measurements of Alternative Aviation Turbine Fuels
,”
Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem.
,
55
, p.
1
.https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=907278
53.
Bruno
,
T.
,
Huber
,
M.
,
Laesecke
,
A.
,
Lemmon
,
E.
,
McLinden
,
M.
,
Outcalt
,
S.
,
Perkins
,
R.
,
Smith
,
B.
, and
Widegren
,
J.
,
2010
,
Thermodynamic, Transport, and Chemical Properties of “Reference” JP-8
, NISTIR 6659,
US Department of Commerce, National Institute of Standards and Technology
,
Gaithersburg, MD
.
54.
Deng
,
H.
,
Zhang
,
C.
,
Xu
,
G.
,
Tao
,
Z.
,
Zhang
,
B.
, and
Liu
,
G.
,
2011
, “
Density Measurements of Endothermic Hydrocarbon Fuel at Sub-and Supercritical Conditions
,”
J. Chem. Eng. Data
,
56
(
6
), pp.
2980
2986
.10.1021/je200258g
55.
Deng
,
H.
,
Zhang
,
C.
,
Xu
,
G.
,
Zhang
,
B.
,
Tao
,
Z.
, and
Zhu
,
K.
,
2012
, “
Viscosity Measurements of Endothermic Hydrocarbon Fuel From (298 to 788) K Under Supercritical Pressure Conditions
,”
J. Chem. Eng. Data
,
57
(
2
), pp.
358
365
.10.1021/je200901y
56.
Deng
,
H.
,
Zhu
,
K.
,
Xu
,
G.
,
Tao
,
Z.
,
Zhang
,
C.
, and
Liu
,
G.
,
2012
, “
Isobaric Specific Heat Capacity Measurement for Kerosene RP-3 in the Near-Critical and Supercritical Regions
,”
J. Chem. Eng. Data
,
57
(
2
), pp.
263
268
.10.1021/je200523a
57.
Xu
,
G.
,
Jia
,
Z.
,
Wen
,
J.
,
Deng
,
H.
, and
Fu
,
Y.
,
2015
, “
Thermal-Conductivity Measurements of Aviation Kerosene RP-3 From (285 to 513) K at Sub-and Supercritical Pressures
,”
Int. J. Thermophys.
,
36
(
4
), pp.
620
632
.10.1007/s10765-015-1840-4
58.
Richards
,
K.
,
Senecal
,
P.
, and
Pomraning
,
E.
,
2014
,
Converge (Version 2.2. 0) Manual
,
Convergent Science
,
Madison, WI
.
59.
Senecal
,
P.
,
Pomraning
,
E.
,
Richards
,
K.
, and
Som
,
S.
,
2012
, “
Grid-Convergent Spray Models for Internal Combustion Engine CFD Simulations
,”
ASME
Paper No. JERT-13-1108. 10.1115/JERT-13-1108
60.
Zhang
,
X.
, and
Sarathy
,
S. M.
,
2021
, “
A Lumped Kinetic Model for High-Temperature Pyrolysis and Combustion of 50 Surrogate Fuel Components and Their Mixtures
,”
Fuel
,
286
, p.
119361
.10.1016/j.fuel.2020.119361
61.
Fang
,
X.
,
Huang
,
X.
,
Chen
,
W.
,
Qiao
,
X.
, and
Ju
,
D.
,
2020
, “
Development of a Skeletal Surrogate Mechanism for Emulating Combustion Characteristics of Diesel From Direct Coal Liquefaction
,”
Combust. Flame
,
218
, pp.
84
97
.10.1016/j.combustflame.2020.03.022
62.
Curran
,
H. J.
,
2019
, “
Developing Detailed Chemical Kinetic Mechanisms for Fuel Combustion
,”
Proc. Combust. Inst.
,
37
(
1
), pp.
57
81
.10.1016/j.proci.2018.06.054
63.
Zhou
,
C.-W.
,
Li
,
Y.
,
Burke
,
U.
,
Banyon
,
C.
,
Somers
,
K. P.
,
Ding
,
S.
,
Khan
,
S.
, et al.,
2018
, “
An Experimental and Chemical Kinetic Modeling Study of 1, 3-Butadiene Combustion: Ignition Delay Time and Laminar Flame Speed Measurements
,”
Combust. Flame
,
197
, pp.
423
438
.10.1016/j.combustflame.2018.08.006
64.
Sarathy
,
S. M.
,
Javed
,
T.
,
Karsenty
,
F.
,
Heufer
,
A.
,
Wang
,
W.
,
Park
,
S.
,
Elwardany
,
A.
, et al.,
2014
, “
A Comprehensive Combustion Chemistry Study of 2, 5-Dimethylhexane
,”
Combust. Flame
,
161
(
6
), pp.
1444
1459
.10.1016/j.combustflame.2013.12.010
65.
Metcalfe
,
W.
,
Dooley
,
S.
, and
Dryer
,
F.
,
2011
, “
Comprehensive Detailed Chemical Kinetic Modeling Study of Toluene Oxidation
,”
Energy Fuels
,
25
(
11
), pp.
4915
4936
.10.1021/ef200900q
66.
Chen
,
Y.
, and
Chen
,
J.-Y.
,
2016
, “
Application of Jacobian Defined Direct Interaction Coefficient in DRGEP-Based Chemical Mechanism Reduction Methods Using Different Graph Search Algorithms
,”
Combust. Flame
,
174
, pp.
77
84
.10.1016/j.combustflame.2016.09.006
67.
Stagni
,
A.
,
Frassoldati
,
A.
,
Cuoci
,
A.
,
Faravelli
,
T.
, and
Ranzi
,
E.
,
2016
, “
Skeletal Mechanism Reduction Through Species-Targeted Sensitivity Analysis
,”
Combust. Flame
,
163
, pp.
382
393
.10.1016/j.combustflame.2015.10.013
68.
Li
,
H.
, and
Yang
,
W.
,
2021
, “
An Innovative Automatic Dynamic Target Species Selection Technique for Skeletal Chemical Reaction Mechanism Development for Various Fuels
,”
Fuel
,
305
, p.
121504
.10.1016/j.fuel.2021.121504
69.
Curtis
,
N. J.
,
Niemeyer
,
K. E.
, and
Sung
,
C.-J.
,
2015
, “
An Automated Target Species Selection Method for Dynamic Adaptive Chemistry Simulations
,”
Combust. Flame
,
162
(
4
), pp.
1358
1374
.10.1016/j.combustflame.2014.11.004
70.
Liang
,
L.
,
Stevens
,
J. G.
, and
Farrell
,
J. T.
,
2009
, “
A Dynamic Adaptive Chemistry Scheme for Reactive Flow Computations
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
527
534
.10.1016/j.proci.2008.05.073
71.
Chen
,
Y.
, and
Chen
,
J.-Y.
,
2018
, “
Towards Improved Automatic Chemical Kinetic Model Reduction Regarding Ignition Delays and Flame Speeds
,”
Combust. Flame
,
190
, pp.
293
301
.10.1016/j.combustflame.2017.11.024
72.
2010
, “
CHEMKIN-PRO
,”
Release 15101
,
Reaction Design
,
San Diego, CA
.
73.
Shen
,
H.-P. S.
,
Steinberg
,
J.
,
Vanderover
,
J.
, and
Oehlschlaeger
,
M. A.
,
2009
, “
A Shock Tube Study of the Ignition of n-Heptane, n-Decane, n-Dodecane, and n-Tetradecane at Elevated Pressures
,”
Energy Fuels
,
23
(
5
), pp.
2482
2489
.10.1021/ef8011036
74.
Shen
,
H.-P. S.
,
Vanderover
,
J.
, and
Oehlschlaeger
,
M. A.
,
2009
, “
A Shock Tube Study of the Auto-Ignition of Toluene/Air Mixtures at High Pressures
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
165
172
.10.1016/j.proci.2008.05.004
75.
Mze-Ahmed
,
A.
,
Hadj-Ali
,
K.
,
Dagaut
,
P.
, and
Dayma
,
G.
,
2012
, “
Experimental and Modeling Study of the Oxidation Kinetics of n-Undecane and n-Dodecane in a Jet-Stirred Reactor
,”
Energy Fuels
,
26
(
7
), pp.
4253
4268
.10.1021/ef300588j
76.
Yuan
,
W.
,
Li
,
Y.
,
Dagaut
,
P.
,
Yang
,
J.
, and
Qi
,
F.
,
2015
, “
Investigation on the Pyrolysis and Oxidation of Toluene Over a Wide Range Conditions. I. Flow Reactor Pyrolysis and Jet Stirred Reactor Oxidation
,”
Combust. Flame
,
162
(
1
), pp.
3
21
.10.1016/j.combustflame.2014.07.009
77.
Ji
,
C.
,
Dames
,
E.
,
Wang
,
Y. L.
,
Wang
,
H.
, and
Egolfopoulos
,
F. N.
,
2010
, “
Propagation and Extinction of Premixed C5–C12n-Alkane Flames
,”
Combust. Flame
,
157
(
2
), pp.
277
287
.10.1016/j.combustflame.2009.06.011
78.
Ji
,
C.
,
Sarathy
,
S. M.
,
Veloo
,
P. S.
,
Westbrook
,
C. K.
, and
Egolfopoulos
,
F. N.
,
2012
, “
Effects of Fuel Branching on the Propagation of Octane Isomers Flames
,”
Combust. Flame
,
159
(
4
), pp.
1426
1436
.10.1016/j.combustflame.2011.12.004
79.
Hui
,
X.
,
Das
,
A. K.
,
Kumar
,
K.
,
Sung
,
C.-J.
,
Dooley
,
S.
, and
Dryer
,
F. L.
,
2012
, “
Laminar Flame Speeds and Extinction Stretch Rates of Selected Aromatic Hydrocarbons
,”
Fuel
,
97
, pp.
695
702
.10.1016/j.fuel.2012.02.045
80.
Wang
,
H.
, and
Oehlschlaeger
,
M. A.
,
2012
, “
Autoignition Studies of Conventional and Fischer–Tropsch Jet Fuels
,”
Fuel
,
98
, pp.
249
258
.10.1016/j.fuel.2012.03.041
81.
Liu
,
J.
,
Hu
,
E.
,
Yin
,
G.
,
Huang
,
Z.
, and
Zeng
,
W.
,
2022
, “
An Experimental and Kinetic Modeling Study on the Low-Temperature Oxidation, Ignition Delay Time, and Laminar Flame Speed of a Surrogate Fuel for RP-3 Kerosene
,”
Combust. Flame
,
237
, p.
111821
.10.1016/j.combustflame.2021.111821
82.
Hui
,
X.
, and
Sung
,
C.-J.
,
2013
, “
Laminar Flame Speeds of Transportation-Relevant Hydrocarbons and Jet Fuels at Elevated Temperatures and Pressures
,”
Fuel
,
109
, pp.
191
200
.10.1016/j.fuel.2012.12.084
83.
Kim
,
D.
,
Martz
,
J.
, and
Violi
,
A.
,
2017
, “
The Relative Importance of Fuel Oxidation Chemistry and Physical Properties to Spray Ignition
,”
SAE Int. J. Fuels Lubricants
,
10
(
1
), pp.
10
21
.10.4271/2017-01-0269
84.
Liu
,
X.
,
Kokjohn
,
S.
,
Wang
,
H.
, and
Yao
,
M.
,
2019
, “
A Comparative Numerical Investigation of Reactivity Controlled Compression Ignition Combustion Using Large Eddy Simulation and Reynolds-Averaged Navier-Stokes Approaches
,”
Fuel
,
257
, p.
116023
.10.1016/j.fuel.2019.116023
85.
Maes
,
N.
,
Tagliante
,
F.
,
Sim
,
H. S.
,
Meijer
,
M.
,
Manin
,
J.
, and
Pickett
,
L. M.
,
2023
, “
Considerations for the Temperature Stratification in a Pre-Burn Constant-Volume Combustion Chamber
,”
Exp. Therm. Fluid Sci.
,
144
, p.
110866
.10.1016/j.expthermflusci.2023.110866
86.
Pickett
,
L. M.
, and
Siebers
,
D. L.
,
2004
, “
Soot in Diesel Fuel Jets: Effects of Ambient Temperature, Ambient Density, and Injection Pressure
,”
Combust. Flame
,
138
(
1–2
), pp.
114
135
.10.1016/j.combustflame.2004.04.006
87.
Kook
,
S.
, and
Pickett
,
L. M.
,
2012
, “
Soot Volume Fraction and Morphology of Conventional, Fischer-Tropsch, Coal-Derived, and Surrogate Fuel at Diesel Conditions
,”
SAE Int. J. Fuels Lubricants
,
5
(
2
), pp.
647
664
.10.4271/2012-01-0678
You do not currently have access to this content.