Abstract

The complex vortex flow interactions are critical to affect the fuel–air mixing and combustion stability in direct-injection engine. However, due to the strong cyclic variations inside engine, the multiscale swirl flow characteristics with cyclic details are difficult to be sufficiently revealed. Therefore, a vortex detection and characterization framework, including physical and data-driven methods, is implemented to elucidate the cyclic vortex interaction process. In this study, a high-speed time-resolved particle image velocimetry is applied to record the spatiotemporal flow behavior under three different swirl ratio conditions. First, the presence of vortex motion is detected at each crank angle for each engine cycle. Results show that the vortex interaction processes under different swirl ratio conditions exhibit distinctive characteristics. The presence of multiple vortices and their interactions are found to trigger dramatic changes and variations in swirl flow behavior. Then, the individual-cycle analysis of the vortex interaction effects on flow characteristics is conducted. The vortex characteristics including vortex location, strength, and size are examined with cyclic detail using data-driven unsupervised clustering. Results indicate that the vortex merging is the main source inducing the vortex characteristics variations. Furthermore, the occurrence and duration of the vortex merging process are found to be closely related to the intake swirl ratio and valve lift profile. Increased swirl ratio and valve lift cause vortex to merge earlier and reduce the merging duration. This finding provides a potential idea to alleviate the cyclic variation issue by controlling the vortex merging process.

References

1.
Zhao
,
F.
,
Lai
,
M. C.
, and
Harrington
,
D. L.
,
1999
, “
Automotive Spark-Ignition Direct-Injection Gasoline Engines
,”
Prog. Energy Combust. Sci.
,
25
(
5
), pp.
437
562
.10.1016/S0360-1285(99)00004-0
2.
Stiehl
,
R.
,
Schorr
,
J.
,
Krüger
,
C.
,
Dreizler
,
A.
, and
Böhm
,
B.
,
2013
, “
In-Cylinder Flow and Fuel Spray Interactions in a Stratified Spray-Guided Gasoline Engine Investigated by High-Speed Laser Imaging Techniques
,”
Flow, Turbul. Combust.
,
91
(
3
), pp.
431
450
.10.1007/s10494-013-9500-x
3.
Porpatham
,
E.
,
Ramesh
,
A.
, and
Nagalingam
,
B.
,
2013
, “
Effect of Swirl on the Performance and Combustion of a Biogas Fuelled Spark Ignition Engine
,”
Energy Convers. Manage.
,
76
, pp.
463
471
.10.1016/j.enconman.2013.07.071
4.
Ko
,
I.
,
Kim
,
J.
, and
Min
,
K.
,
2022
, “
Understanding the Effect of Turbulent Flow on the Combustion Cyclic Variation in a Spark Ignition Engine Using Large-Eddy Simulation
,”
Fuel
,
322
, p.
123773
.10.1016/j.fuel.2022.123773
5.
Kaplan
,
M.
,
2019
, “
Influence of Swirl, Tumble and Squish Flows on Combustion Characteristics and Emissions in Internal Combustion Engine-Review
,”
Int. J. Automot. Eng. Technol.
,
8
(
2
), pp.
83
102
.10.18245/ijaet.558258
6.
Zeng
,
W.
,
Sjöberg
,
M.
,
Reuss
,
D.
, and
Hu
,
Z.
,
2016
, “
The Role of Spray-Enhanced Swirl Flow for Combustion Stabilization in a Stratified-Charge DISI Engine
,”
Combust. Flame
,
168
, pp.
166
185
.10.1016/j.combustflame.2016.03.015
7.
Fatehi
,
H.
,
Persson
,
H.
,
Lucchini
,
T.
,
Ljungqvist
,
M.
, and
Andersson
,
O.
,
2019
, “
Effects of in-Cylinder Flow Structures on Soot Formation and Oxidation in a Swirl-Supported Light-Duty Diesel Engine
,”
SAE
Paper No. 2019-24-0009. 10.4271/2019-24-0009
8.
Li
,
Y.
,
Zhao
,
H.
,
Peng
,
Z.
, and
Ladommatos
,
N.
,
2002
, “
Particle Image Velocimetry Measurement of in-Cylinder Flow in Internal Combustion Engines-Experiment and Flow Structure Analysis
,”
Proc. Inst. Mech. Eng., Part D
,
216
(
1
), pp.
65
81
.10.1243/0954407021528913
9.
Huang
,
R. F.
,
Lin
,
K. H.
,
Yeh
,
C.-N.
, and
Lan
,
J.
,
2009
, “
In-Cylinder Tumble Flows and Performance of a Motorcycle Engine With Circular and Elliptic Intake Ports
,”
Exp. Fluids
,
46
(
1
), pp.
165
179
.10.1007/s00348-008-0551-z
10.
Murali Krishna
,
B.
, and
Mallikarjuna
,
J. M.
,
2010
, “
Comparative Study of In-Cylinder Tumble Flows in an Internal Combustion Engine Using Different Piston Shapes—An Insight Using Particle Image Velocimetry
,”
Exp. Fluids
,
48
(
5
), pp.
863
874
.10.1007/s00348-009-0783-6
11.
Epps
,
B.
,
2017
, “
Review of Vortex Identification Methods
,”
AIAA
Paper No. 2017-0989. 10.2514/6.2017-0989
12.
Li
,
Y.
,
Zhao
,
H.
,
Peng
,
Z.
, and
Ladommatos
,
N.
,
2001
, “
Analysis of Tumble and Swirl Motions in a Four-Valve SI Engine
,”
SAE
Paper No. 2001-01-3555.
13.
Buhl
,
S.
,
Gleiss
,
F.
,
Köhler
,
M.
,
Hartmann
,
F.
,
Messig
,
D.
,
Brücker
,
C.
, and
Hasse
,
C.
,
2017
, “
A Combined Numerical and Experimental Study of the 3D Tumble Structure and Piston Boundary Layer Development During the Intake Stroke of a Gasoline Engine
,”
Flow Turbul. Combust.
,
98
(
2
), pp.
579
600
.10.1007/s10494-016-9754-1
14.
Yang
,
J.
,
Xu
,
M.
,
Hung
,
D. L. S.
,
Wu
,
Q.
, and
Dong
,
X.
,
2017
, “
Influence of Swirl Ratio on Fuel Distribution and Cyclic Variation Under Flash Boiling Conditions in a Spark Ignition Direct Injection Gasoline Engine
,”
Energy Convers. Manage.
,
138
, pp.
565
576
.10.1016/j.enconman.2017.02.024
15.
Hung
,
D. L. S.
,
Chen
,
H.
,
Xu
,
M.
,
Yang
,
J.
, and
Zhuang
,
H.
,
2014
, “
Experimental Investigation of the Variations of Early Flame Development in a Spark-Ignition Direct-Injection Optical Engine
,”
ASME J. Eng. Gas Turbines Power
,
136
(
10
), p.
101503
.10.1115/1.4027256
16.
Stansfield
,
P.
,
Wigley
,
G.
,
Justham
,
T.
,
Catto
,
J.
, and
Pitcher
,
G.
,
2007
, “
PIV Analysis of In-Cylinder Flow Structures Over a Range of Realistic Engine Speeds
,”
Exp. Fluids
,
43
, pp.
135
146
. 10.1007/s00348-007-0335-x
17.
Janas
,
P.
,
Wlokas
,
I.
,
Bohm
,
B.
, and
Kempf
,
A.
,
2017
, “
On the Evolution of the Flow Field in a Spark Ignition Engine
,”
Flow, Turbul. Combust.
,
98
(
1
), pp.
237
264
.10.1007/s10494-016-9744-3
18.
Chen
,
H.
,
Reuss
,
D.
, and
Sick
,
V.
,
2012
, “
On the Use and Interpretation of Proper Orthogonal Decomposition of In-Cylinder Engine Flows
,”
Meas. Sci. Technol.
,
23
(
8
), p.
085302
.10.1088/0957-0233/23/8/085302
19.
Sick
,
V.
,
Chen
,
H.
,
Abraham
,
P. S.
,
Reuss
,
D. L.
,
Yang
,
X.
,
Gopalakrishnan
,
V.
,
Xu
,
M.
, and
Kuo
,
T. W.
,
2012
, “
Proper-Orthogonal Decomposition Analysis for Engine Research
,”
Ninth Congress, Gasoline Direct Injection Engines
, Essen, Germany, pp.
1
12
.https://www.researchgate.net/publication/299397533_Proper-Orthogonal_Decomposition_Analysis_For_Engine_Research
20.
Druault
,
P.
, and
Chaillou
,
C.
,
2007
, “
Use of Proper Orthogonal Decomposition for Reconstructing the 3D in-Cylinder Mean-Flow Field From PIV Data
,”
C. R. Méc.
,
335
(
1
), pp.
42
47
.10.1016/j.crme.2006.11.004
21.
Liu
,
M.
,
Zhao
,
F.
,
Li
,
X.
,
Xu
,
M.
, and
Hung
,
D. L. S.
,
2020
, “
Dynamic Mode Decomposition for Extracting Cycle-to-Cycle Variation of SIDI Engine in-Cylinder Flow Under Motoring Condition
,”
ASME
Paper No. ICEF2020-2917. 10.1115/ICEF2020-2917
22.
Zhao
,
F.
,
Ge
,
P.
,
Zhuang
,
H.
, and
Hung
,
D. L. S.
,
2018
, “
Analysis of Crank Angle-Resolved Vortex Characteristics Under High Swirl Condition in a Spark-Ignition Direct-Injection Engine
,”
ASME J. Eng. Gas Turbines Power
,
140
(
9
), p.
092807
.10.1115/1.4039082
23.
Hartmann
,
F.
,
Buhl
,
S.
,
Gleiss
,
F.
,
Barth
,
P.
,
Schild
,
M.
,
Kaiser
,
S. A.
, and
Hasse
,
C.
,
2016
, “
Spatially Resolved Experimental and Numerical Investigation of the Flow Through the Intake Port of an Internal Combustion Engine
,”
Oil Gas Sci. Technol.
,
71
(
1
), p.
2
.10.2516/ogst/2015022
24.
Liu
,
D.
,
Wang
,
T.
,
Jia
,
M.
, and
Wang
,
G.
,
2012
, “
Cycle-to-Cycle Variation Analysis of in-Cylinder Flow in a Gasoline Engine With Variable Valve Lift
,”
Exp. Fluids
,
53
(
3
), pp.
585
602
.10.1007/s00348-012-1314-4
25.
Zhao
,
F.
,
Liu
,
M.
,
Fan
,
W.
,
Wu
,
J.
,
Zhang
,
J.
, and
Hung
,
D. L. S.
,
2021
, “
Hybridizing Unsupervised Clustering Methods for in-Cylinder Vortex Motion Analysis Under Different Swirl Ratio Conditions
,”
SAE
Paper No. 2021-01-0425. 10.4271/2021-01-0425
26.
Zhao
,
F.
,
Ruan
,
Z.
,
Yue
,
Z.
,
Hung
,
D. L. S.
,
Som
,
S.
, and
Xu
,
M.
,
2020
, “
Time-Sequenced Flow Field Prediction in an Optical Spark-Ignition Direct-Injection Engine Using Bidirectional Recur-Rent Neural Network (bi-RNN) With Long Short-Term Memory
,”
Appl. Therm. Eng.
,
173
, p.
115253
.10.1016/j.applthermaleng.2020.115253
27.
Liu
,
J.
,
Huang
,
Q.
,
Ulishney
,
C.
, and
Dumitrescu
,
C. E.
,
2021
, “
Machine Learning Assisted Prediction of Exhaust Gas Temperature of a Heavy-Duty Natural Gas Spark Ignition Engine
,”
Appl. Energy
,
300
, p.
117413
.10.1016/j.apenergy.2021.117413
28.
Perceau
,
M.
,
Guibert
,
P.
, and
Guilain
,
S.
,
2022
, “
Analysis of a Tumbling Motion Using a Clustering Algorithm on dual-PIV Measurements: Application to the in-Cylinder Flow of a Miller Cycle Engine
,”
Exp. Fluids
,
63
(
3
), pp.
1
12
.10.1007/s00348-022-03405-w
29.
Dreher
,
D.
,
Schmidt
,
M.
,
Welch
,
C.
,
Ourza
,
S.
,
Zundorf
,
S.
,
Maucher
,
J.
,
Peters
,
S.
, et al.,
2021
, “
Deep Feature Learning of in-Cylinder Flow Fields to Analyze Cycle-to-Cycle Variations in an SI Engine
,”
Int. J. Engine Res.
,
22
(
11
), pp.
3263
3285
.10.1177/1468087420974148
30.
Hanuschkin
,
A.
,
Schober
,
S.
,
Bode
,
J.
,
Schorr
,
J.
,
Böhm
,
B.
,
Krüger
,
C.
, and
Peters
,
S.
,
2021
, “
Machine Learning-Based Analysis of in-Cylinder Flow Fields to Predict Combustion Engine Performance
,”
Int. J. Engine Res.
,
22
(
1
), pp.
257
272
.10.1177/1468087419833269
31.
Kodavasal
,
J.
,
Moiz
,
A.
,
Ameen
,
M.
, and
Som
,
S.
,
2018
, “
Using Machine Learning to Analyze Factors Determining Cycle-to-Cycle Variation in a Spark-Ignited Gasoline Engine
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
102204
.10.1115/1.4040062
32.
Cao
,
Y.
,
Kaiser
,
E.
,
Borée
,
J.
,
Noack
,
B. R.
,
Thomas
,
L.
, and
Guilain
,
S.
,
2014
, “
Cluster-Based Analysis of Cycle-to-Cycle Variations: Application to Internal Combustion Engines
,”
Exp. Fluids
,
55
(
11
), pp.
1
8
.10.1007/s00348-014-1837-y
33.
Liu
,
M.
,
Zhao
,
F.
, and
Hung
,
D. L. S.
,
2023
, “
A Coupled Phase-Invariant POD and DMD Analysis for the Characterization of in-Cylinder Cycle-to-Cycle Flow Variations Under Different Swirl Conditions
,”
Flow, Turbul. Combust.
,
110
(
1
), pp.
31
57
.10.1007/s10494-022-00348-4
34.
Chong
,
M. S.
,
Perry
,
A. E.
, and
Cantwell
,
B. J.
,
1990
, “
A General Classification of Three-Dimensional Flow Fields
,”
Phys. Fluids A
,
2
(
5
), pp.
765
777
.10.1063/1.857730
You do not currently have access to this content.