Abstract

The geometric scaling method is often used in the design and development of axial compressors to reduce high costs. However, Reynolds number, surface roughness, and tip clearance are often difficult to satisfy all the similarity criteria, which breaks the similarity between the Prototype and the Model compressor. This study utilized a 1.5-stage axial compressor as the Prototype to investigate the effects of Reynolds number, surface roughness, and tip clearance on the geometric scaling process. First, the 0.5 scale Model compressor was simulated using RANS method with the scalable wall function. A test facility was constructed for the 0.5 scale Model compressor, and experiments of varying surface roughness and tip clearance were carried out to verify the reliability of the numerical method. Then, the Prototype and Models with scaling factors of 0.4 and 0.33 were simulated using the same numerical method. By analyzing the numerical results of the Prototype and the three Models, a novel correction method for the deviation between the performance of the Prototype and the Model was proposed. This method can be used to correct the deviation of compressors' performance curves caused by the change in Reynolds number, surface roughness, and tip clearance during the geometric scaling process. Meanwhile, both numerical and experimental results were used to validate the accuracy and the universal applicability of the method.

References

1.
Ikeguchi
,
T.
,
Matsuoka
,
A.
,
Sakai
,
Y.
, and
Sakano
,
Y.
,
2012
, “
Design and Development of a 14-Stage Axial Compressor for Industrial Gas Turbine
,”
ASME
Paper No. GT2012-68524. 10.1115/GT2012-68524
2.
Meindl
,
T.
,
Farkas
,
F.
, and
Klussmann
,
W.
,
1995
, “
The Development of a Multi-Stage Compressor for Heavy Duty Industrial Gas Turbines
,”
ASME
Paper No. 95-GT-371. 10.1115/95-GT-371
3.
Waitke
,
U.
, and
Ladwig
,
M.
,
1997
, “
Performance Measurements in Large and Small Scale Multi-Stage Axial Compressors
,”
ASME
Paper No. 97-AA-010. 10.1115/97-AA-010
4.
Ernst
,
B.
,
Kammeyer
,
J.
, and
Seume
,
J. R.
,
2011
, “
Improved Map Scaling Methods for Small Turbocharger Compressors
,”
ASME
Paper No. GT2011-45345. 10.1115/GT2011-45345
5.
Kim
,
T. G.
,
Jung
,
Y. J.
,
Jung
,
Y.
, and
Choi
,
M.
,
2015
, “
Effects of Low Reynolds Numbers on Performance of a One-Stage Axial Compressor
,”
Trans. Jpn. Soc. Aeronaut. Space Sci.
,
58
(
5
), pp.
280
288
.10.2322/tjsass.58.280
6.
Dietmann
,
F.
, and
Casey
,
M.
,
2014
, “
The Effects of Reynolds Number and Roughness on Compressor Performance
,”
Proceedings of the 10th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics
,
Lappeenranta, Finland
, Apr. 15–19, pp.
532
542
.https://www.semanticscholar.org/paper/The-effectsof-Reynolds-number-and-roughness-on-Dietmann-Casey/6ecf1a0a2f9e83c2a1f4aaab0f9d3865d653a63b
7.
Tang
,
Y.
,
Xi
,
G.
,
Wang
,
Z.
, and
Tian
,
Y.
,
2020
, “
Quantitative Study on Equivalent Roughness Conversion Coefficient and Roughness Effect of Centrifugal Compressor
,”
ASME J. Fluids Eng.
,
142
(
2
), p.
021208
.10.1115/1.4044843
8.
Koch
,
C. C.
, and
Smith
,
L. H.
,
1976
, “
Loss Sources and Magnitudes in Axial-Flow Compressors
,”
ASME J. Eng. Power
,
98
(
3
), pp.
411
424
.10.1115/1.3446202
9.
Hummel
,
F.
,
Lötzerich
,
M.
,
Cardamone
,
P.
, and
Fottner
,
L.
,
2004
, “
Surface Roughness Effects on Turbine Blade Aerodynamics
,”
ASME
Paper No. GT2004-53314. 10.1115/GT2004-53314
10.
Gbadebo
,
S. A.
,
Hynes
,
T. P.
, and
Cumpsty
,
N. A.
,
2004
, “
Influence of Surface Roughness on Three-Dimensional Separation in Axial Compressors
,”
ASME
Paper No. GT2004-53619. 10.1115/GT2004-53619
11.
Hazby
,
H.
,
Casey
,
M.
, and
Březina
,
L.
,
2019
, “
Effect of Leakage Flows on the Performance of a Family of Inline Centrifugal Compressors
,”
ASME J. Turbomach.
,
141
(
9
), p.
091006
.10.1115/1.4043786
12.
Zhu
,
W.
,
Wang
,
S.
,
Zhang
,
L.
,
Ding
,
J.
, and
Wang
,
Z.
,
2020
, “
Effect of Tip Clearance Size on the Performance of a Low-Reaction Transonic Axial Compressor Rotor
,”
Proc. Inst. Mech. Eng., Part A
,
234
(
2
), pp.
127
142
.10.1177/0957650919856541
13.
Ostad
,
M.
, and
Kamali
,
R.
,
2018
, “
Evaluating the Effects of Blade Tip Clearance in Various Stages on the Performance of an Axial Compressor
,”
J. Appl. Fluid Mech.
,
11
(
2
), pp.
475
481
.10.29252/JAFM.11.02.27936
14.
Wassell
,
A. B.
,
1968
, “
Reynolds Number Effects in Axial Compressors
,”
ASME J. Eng. Power
,
90
(
2
), pp.
149
156
.10.1115/1.3609154
15.
Pelz
,
P. F.
, and
Stonjek
,
S. S.
,
2013
, “
The Influence of Reynolds Number and Roughness on the Efficiency of Axial and Centrifugal Fans—A Physically Based Scaling Method
,”
ASME J. Eng. Gas Turbines Power
,
135
(
5
), p.
052601
.10.1115/1.4022991
16.
Schäffler
,
A.
,
1980
, “
Experimental and Analytical Investigation of the Effects of Reynolds Number and Blade Surface Roughness on Multistage Axial Flow Compressors
,”
ASME J. Eng. Gas Turbines Power
,
102
(
1
), pp.
5
12
.10.1115/1.3230232
17.
Tiainen
,
J.
,
Jaatinen-Värri
,
A.
,
Grönman
,
A.
, and
Backman
,
J.
,
2016
, “
Numerical Study of the Reynolds Number Effect on the Centrifugal Compressor Performance and Losses
,”
ASME
Paper No. GT2016-56036.10.1115/GT2016-56036
18.
Pfleiderer
,
C.
,
1955
,
Die Kreiselpumpen Für Flüssigkeiten Und Gase
,
Springer
,
Berlin
.
19.
Mühlemann
,
E.
,
1948
, “
Zur Aufwertung Des Wirkungsgrads Von Überdruck-Wasserturbinen
,”
Schweiz. Bauztg.
,
66
(
24
), pp.
331
333
.
20.
Heß
,
M.
, and
Pelz
,
P. F.
,
2010
, “
On Reliable Performance Prediction of Axial Turbomachines
,”
ASME
Paper No. GT2010-22290. 10.1115/GT2010-22290
21.
Simon
,
H.
, and
Bülskämper
,
A.
,
1984
, “
On the Evaluation of Reynolds Number and Relative Surface Roughness Effects on Centrifugal Compressor Performance Based on Systematic Experimental Investigations
,”
ASME J. Eng. Gas Turbines Power
,
106
(
2
), pp.
489
498
.10.1115/1.3239592
22.
Scarbolo
,
L.
,
Belardini
,
E.
,
Bellobuono
,
E. F.
,
Rubino
,
D. T.
, and
Tapinassi
,
L.
,
2016
, “
Reynolds Correction in Centrifugal Compressors: Theory and Experimental Validation of a Revised Correlation
,”
ASME
Paper No. GT2016-56396.10.1115/GT2016-56396
23.
Wiesner
,
F. J.
,
1979
, “
A New Appraisal of Reynolds Number Effects on Centrifugal Compressor Performance
,”
ASME J. Eng. Power
,
101
(
3
), pp.
384
392
.10.1115/1.3446586
24.
Strub
,
R. A.
,
Bonciani
,
L.
,
Borer
,
C. J.
,
Casey
,
M. V.
,
Cole
,
S. L.
,
Cook
,
B. B.
,
Kotzur
,
J.
,
Simon
,
H.
, and
Strite
,
M. A.
,
1987
, “
Influence of the Reynolds Number on the Performance of Centrifugal Compressors
,”
ASME J. Turbomach.
,
109
(
4
), pp.
541
544
.10.1115/1.3262145
25.
Ji
,
C.
,
Wang
,
Z.
, and
Xi
,
G.
,
2022
, “
Computer 3D Vision-Aided Full-3D Optimization of a Centrifugal Impeller
,”
ASME J. Turbomach.
,
144
(
9
), p.
091011
.10.1115/1.4053744
26.
Wójtowicz
,
R.
,
Lipin
,
A. A.
, and
Talaga
,
J.
,
2014
, “
On the Possibility of Using of Different Turbulence Models for Modeling Flow Hydrodynamics and Power Consumption in Mixing Vessels With Turbine Impellers
,”
Theor. Found. Chem. Eng.
,
48
(
4
), pp.
360
375
.10.1134/S0040579514020146
27.
ANSYS CFX 2019 R1
,
2019
, “
ANSYS CFX-Solver Theory Guide
,”
ANSYS
,
Canonsburg, PA
.
28.
Bons
,
J. P.
,
2010
, “
A Review of Surface Roughness Effects in Gas Turbines
,”
ASME J. Turbomach.
,
132
(
2
), p.
021004
.10.1115/1.3066315
29.
Moore
,
R. D.
, and
Reid
,
L.
,
1980
, “
Performance of Single-Stage Axial-Flow Transonic Compressor With Rotor and Stator Aspect Ratios of 1.19 and 1.26, Respectively, and With Design Pressure Ratio of 2.05
,” NASA, Cleveland, OH, Report No.
NASA-TP-1659
.https://ntrs.nasa.gov/citations/19800012840
30.
Pelz
,
P. F.
, and
Heß
,
M.
,
2010
, “
Scaling Friction and Inertia Losses for the Performance Prediction of Turbomachines
,”
Proceedings of the 13th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery 2010, ISROMAC-13
, Honolulu, HI, Apr. 4–7, pp.
401
405
.https://d-nb.info/1259418901/34
31.
Diehl
,
M.
,
Schreiber
,
C.
, and
Schiffmann
,
J.
,
2020
, “
The Role of Reynolds Number Effect and Tip Leakage in Compressor Geometry Scaling at Low Turbulent Reynolds Numbers
,”
ASME J. Turbomach.
,
142
(
3
), p.
031003
.10.1115/1.4045465
32.
Gülich
,
J. F.
,
2003
, “
Effect of Reynolds Number and Surface Roughness on the Efficiency of Centrifugal Pumps
,”
ASME J. Fluids Eng.
,
125
(
4
), pp.
670
679
.10.1115/1.1593711
33.
Casey
,
M. V.
, and
Robinson
,
C. J.
,
2011
, “
A Unified Correction Method for Reynolds Number, Size, and Roughness Effects on the Performance of Compressors
,”
Proc. Inst. Mech. Eng., Part A
,
225
(
7
), pp.
864
876
.10.1177/0957650911410161
34.
Karstadt
,
S.
, and
Pelz
,
P. F.
,
2012
, “
A Physical Model for the Tip Vortex Loss—Experimental Validation and Scaling Method
,”
ASME
Paper No. GT2012-68397. 10.1115/GT2012-68397
35.
Casey
,
M. V.
,
1985
, “
The Effects of Reynolds Number on the Efficiency of Centrifugal Compressor Stages
,”
ASME J. Eng. Gas Turbines Power
,
107
(
2
), pp.
541
548
.10.1115/1.3239767
You do not currently have access to this content.