Abstract

In this paper, two novel hole-pattern seals were assessed for applications at the balance piston in a 14 MW supercritical CO2 turbine, focusing on the improvement of the seal leakage and rotordynamic performances. These two novel hole-pattern seals were derived from the conventional straight-through hole-pattern seal (HPS) with the same sealing clearance, diameter, axial length, hole diameter and depth, including a stepped hole-pattern damper seal (SHPS) and a grooved hole-pattern damper seal (GHPS). To enhance the seal net damping capability at high inlet preswirl condition, a straight swirl brake also was designed and employed at seal entrance for each type seal. A comprehensive assessment and comparison was conducted on the conventional HPS and the present two novel hole-pattern seals (SHPS and GHPS) with a static concentric rotor. The leakage flow rates, rotordynamic force coefficients, cavity pressure, and swirl velocity developments were analyzed for three hole-pattern seal designs with/without swirl brakes at two inlet preswirl ratios (0.1, 0.5), using a transient computational fluid dynamics (CFD)-based perturbation method based on the multiple-frequency elliptical-orbit rotor whirling model and the mesh deformation technique. To take into account of real gas effect with high accuracy, a table look-up procedure based on the National Institute of Standards and Technology (NIST) database was implemented, using an in-house code, for the fluid properties of CO2 in both supercritical and subcritical conditions. Results show that the present two novel hole-pattern seals have better sealing capability, especially for the GHPS seal which leaks less by a factor of 44%. In general, the GHPS seal possesses the lowest positive effective stiffness, highest effective damping, and the lowest crossover frequency of 60–70 Hz, especially at high inlet preswirl case. From a viewpoint of the rotor stability and unbalance sensitivity analysis, the GHPS seal without entrance swirl brake is a better seal design scheme for the balance piston seal in sCO2 turbine.

References

1.
Brun
,
K.
,
Friedman
,
P.
, and
Dennis
,
R.
,
2017
,
Fundamentals and Applications of Supercritical Carbon Dioxide (sCO2) Based Power Cycles
,
Elsevier
, Cambridge, MA, pp.
4
21
.
2.
Kimball
,
K. J.
, and
Clementoni
,
E. M.
,
2012
, “
Supercritical Carbon Dioxide Brayton Power Cycle Development Overview
,”
ASME
Paper No. GT2012-68204.10.1115/GT2012-68204
3.
Fuller
,
R.
,
Preuss
,
J.
, and
Noall
,
J.
,
2012
, “
Turbomachinery for Supercritical CO2 Power Cycles
,”
ASME
Paper No. GT2012-68735.10.1115/GT2012-68735
4.
Allison
,
T. C.
,
Moor
,
J. J.
,
Wikes
,
J. C.
, and
Brun
,
K.
,
2017
, “
Turbomachinery Overview for Supercritical CO2 Power Cycles
,”
The 46th Turbomachinery & 33rd Pump Symposia
, Houston, TX, Sept. 11–14, pp.
1
15
.https://hdl.handle.net/1969.1/166785
5.
Conboy
,
T.
,
2012
, “
Gas Bearings and Seals Development for Supercritical CO2 Turbomachinery
,” Sandia National Laboratories, Albuquerque, NM, Technical Report No. SAND2012-8895.
6.
Childs
,
D. W.
,
1993
,
Turbomachinery Rotordynamic: Phenomena, Modeling and Analysis
,
Wiley
,
New York
, p.
292
.
7.
Vance
,
J. M.
,
2010
,
Machinery Vibration and Rotordynamics
,
Wiley
,
New York
, pp.
271
278
.
8.
Li
,
J.
,
De Choudhury
,
P.
, and
Kushner
,
F.
,
2003
, “
Evaluation of Centrifugal Compressor Stability Margin and Investigation of Antiswirl Mechanism
,”
32nd Turbomachinery Symposium
,
Turbomachinery Laboratory, Texas A&M University
, College Station, TX, Sept. 8–11, pp.
49
58
.10.21423/R12D35
9.
Bidkar
,
R. A.
,
Sevincer
,
E.
,
Wang
,
J.
,
Thatte
,
A. M.
,
Mann
,
A.
,
Peter
,
M.
,
Musgrove
,
G.
,
Allison
,
T.
, and
Moore
,
J.
,
2017
, “
Low-Leakage Shaft-End Seals for Utility-Scale Supercritical CO2 Turboexpanders
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
022503
.10.1115/1.4034258
10.
Li
,
Z.
,
Li
,
Z. H.
,
Li
,
J.
, and
Feng
,
Z. H.
,
2021
, “
Leakage and Rotordynamic Characteristics for Three Types of Annular Gas Seals Operating in Supercritical CO2 Turbomachinery
,”
ASME J. Eng. Gas Turbines Power
,
143
(
10
), p.
101002
.10.1115/1.4051104
11.
Baldassarre
,
L.
,
Fontana
,
M.
,
Bernocchi
,
A.
, and
Moretti
,
M.
,
2016
, “
Effect of Relative Journal Bearing and Honeycomb Seal Direct Stiffness on Radial Synchronous Vibrations of High-Pressure Centrifugal Compressors
,”
The 45th Turbomachinery & 32rd Pump Symposia
, Houston, TX, Sept. 12–15, pp.
1
15
.10.21423/R1SG6H
12.
Chupp
,
R. E.
,
Hendricks
,
R. C.
,
Lattime
,
S. B.
, and
Steinetz
,
B. M.
,
2006
, “
Sealing in Turbomachinery
,”
J. Propul. Power
,
22
(
2
), pp.
313
349
.10.2514/1.17778
13.
Yang
,
J.
,
Andres
,
L. S.
, and
Lu
,
X.
,
2021
, “
On the Leakage and Dynamic Force Coefficients of a Novel Stepped Shaft Pocket Damper Seal: Experimental and Numerical Verification
,”
ASME J. Eng. Gas Turbines Power
,
143
(
3
), p. 0
31002
.10.1115/1.4048459
14.
Childs
,
D. W.
, and
Kim
,
C.-H.
,
1985
, “
Analysis and Testing of Turbulent Annular Seals With Different, Directionally Homogeneous Surface Roughness Treatments for Rotor and Stator Elements
,”
ASME J. Tribol.
,
107
(
3
), pp.
296
306
.10.1115/1.3261054
15.
Childs
,
D. W.
, and
Kim
,
C.-H.
,
1986
, “
Test Results for Round-Hole-Pattern Damper Seals: Optimum Configurations and Dimensions for Maximum Net Damping
,”
ASME J. Tribol.
,
108
(
4
), pp.
605
609
.10.1115/1.3261277
16.
Childs
,
D. W.
,
Nolan
,
S. A.
, and
Kilgore
,
J. J.
,
1990
, “
Additional Test Results for Round-Hole-Pattern Damper Seals: Leakage, Friction Factors, and Rotordynamic Force Coefficients
,”
ASME J. Tribol.
,
112
(
2
), pp.
365
371
.10.1115/1.2920266
17.
Childs
,
D. W.
, and
Wade
,
J.
,
2004
, “
Rotordynamic-Coefficient and Leakage Characteristics for Hole-Pattern-Stator Annular Gas Seals-Measurements Versus Predictions
,”
ASME J. Tribol.
,
126
(
2
), pp.
326
333
.10.1115/1.1611502
18.
Brown
,
P.
, and
Childs
,
D.
,
2012
, “
Measurement Verus Predictions of Rotordynamic Coefficients of a Hole-Pattern Gas Seal With Negative Preswirl
,”
ASME J. Eng. Gas Turbines Power
,
134
(
12
), p.
122503
.10.1115/1.4007331
19.
Vannarsdall
,
M.
, and
Childs
,
D. W.
,
2014
, “
Static and Rotordynamic Characteristics for a New Hole Pattern Annular Gas Seal Design Incorporating Large Diameter Holes
,”
ASME J. Eng. Gas Turbines Power
,
136
(
2
), p.
022507
.10.1115/1.4025536
20.
Childs
,
D. W.
,
Arthur
,
S.
, and
Mehta
,
N. J.
,
2014
, “
The Impact of Hole Depth on the Rotordynamic and Leakage Characteristics of Hole-Pattern-Stator Gas Annular Seals
,”
ASME J. Eng. Gas Turbines Power
,
136
(
4
), p.
042501
.10.1115/1.4025888
21.
Li
,
Z.
,
Li
,
Z. H.
,
Li
,
J.
, and
Feng
,
Z. H.
,
2020
, “
Influence of Annular/Pocket Groove on the Static and Rotordynamic Characteristics of Hole-Pattern Seals
,”
ASME J. Eng. Gas Turbines Power
,
142
(
6
), p.
061013
.10.1115/1.4047183
22.
Ishimoto
,
L.
,
Miranda
,
M. A.
,
Audenhove
,
F. N.
,
Silva
,
R. T.
,
Colby
,
G. M.
, and
Memmott
,
E. A.
,
2015
, “
Review of Centrifugal Compressors High Pressure Testing for Offshore Application
,”
The 44th Turbomachinery & 31st Pump Symposia
, Houston, TX, Sept. 14–17, pp.
1
19
.10.21423/R1V04J
23.
Noronha
,
R. F.
,
Tapajoz
,
L. R.
,
Grosso
,
G. R.
,
Ujihara
,
D. Y.
, and
Moreira
,
R. P.
,
2015
, “
Applying CFD to Solve a Vibration Problem of a Compressor
,”
The 44th Turbomachinery & 31st Pump Symposia
, Houston, TX, Sept. 14–17, pp.
1
14
.10.21423/R1CW45
24.
ANSYS
,
2006
,
ANSYS CFX-Solver Theory Guide. Release 11.0
,
Ansys
,
Canonsburg, PA
.
25.
Li
,
Z.
,
Li
,
J.
, and
Yan
,
X.
,
2013
, “
Multiple Frequencies Elliptical Whirling Orbit Model and Transient RANS Solution Approach to Rotordynamic Coefficients of Annual Gas Seals Prediction
,”
ASME J. Vib. Acoust.
,
135
(
3
), p.
031005
.10.1115/1.4023143
26.
Li
,
Z.
,
Li
,
J.
, and
Feng
,
Z. H.
,
2016
, “
Comparison of Rotordynamic Characteristics Predictions for Annular Gas Seals Using the Transient Computational Fluid Dynamic Method Based on Different Single-Frequency and Multi-Frequency Rotor Whirling Models
,”
ASME J. Tribol.
,
138
(
1
), p.
011701
.10.1115/1.4030807
27.
Hoopes
,
K.
,
Moore
,
J. J.
,
Rimpel
,
A.
,
Kulhanek
,
C.
, and
Venkataraman
,
B.
,
2019
, “
A Method for Rotordynamic Force Prediction of a Centrifugal Compressor Impeller Front Cavity Using a Transient Whirling CFD Technique
,”
ASME
Paper No. GT2019-91904.10.1115/GT2019-91904
28.
Childs
,
D. W.
,
Mclean
,
J. E.
,
Zhang
,
M.
, and
Authur
,
S. P.
,
2016
, “
Rotordynamic Performance of a Negative-Swirl Brake for a Tooth-on-Stator Labyrinth Seal
,”
ASME J. Eng. Gas Turbines Power
,
138
(
6
), p.
062505
.10.1115/1.4031877
You do not currently have access to this content.