Abstract

Brush seals are one of the most effective sealing technologies in turbomachinery since they enable contact-type operation for close clearance control. Brush seal bristles must interact under turbine conditions, and the minimum pressure load to initiate proper contact between fibers is called seating load. Seating load evaluation is essential for the durability and stability assessment of bristles since unseated fibers may flutter and cause seal failure. Even with proper seating, brush seal critical modes may still be excited by flow-induced fluctuations or bucket tip excitations. In this study, a finite element-based methodology was developed to determine the seating load and identify the critical modes of brush seals. Under pressure load, brush seal nonlinear contact simulations are followed by frequency-based analysis to determine bristle and seal pack critical modes. To determine the seating load of the brush seal, the change in modal response is examined. In this paper, the modeling methodology, parameter correction procedures, geometric inspection of test seals, correlation of transient analyses with dynamic tip force measurements, operational modes of brush seals and seating load evaluation methods are detailed.

References

1.
Chupp
,
R. E.
, and
Nelson
,
P.
,
1993
, “
Evaluation of Brush Seals for Limited-Life Engines
,”
J. Propul. Power
,
9
(
1
), pp.
113
119
.10.2514/3.11492
2.
Chupp
,
R. E.
, and
Prior
,
R. J.
,
1996
, “
Update on Brush Seal Development for Large Industrial Gas Turbines
,”
AIAA
Paper No.
96
3306
.
3.
Short
,
J. F.
,
Basu
,
P.
,
Datta
,
A.
,
Loewenthal
,
R. G.
, and
Prior
,
R. J.
,
1996
, “
Advanced Brush Seal Development
,”
AIAA
Paper No.
96
2907
.
4.
Crudgington
,
P. F.
, and
Browsher
,
A.
,
2002
, “
Brush Seal Pack Hysteresis
,”
AIAA
Paper No.
2002
3794
.
5.
Duran
,
E. T.
,
Aksit
,
M.
, and
Ozmusul
,
M.
,
2016
, “
Brush Seal Structural Analyses and Correlation With Tests for Turbine Conditions
,”
ASME
Paper No. GTP-15-1292.10.1115/GTP-15-1292
6.
Guardino
,
C.
, and
Chew
,
J. W.
,
2005
, “
Numerical Simulation of Three-Dimensional Bristle Bending in Brush Seals
,”
ASME J. Eng. Gas Turbines Power
,
127
(
3
), pp.
583
591
.10.1115/1.1850943
7.
Lelli
,
D.
,
Chew
,
J. W.
, and
Cooper
,
P.
,
2006
, “
Combined Three-Dimensional Fluid Dynamics and Mechanical Modeling of Brush Seals
,”
ASME J. Turbomach
,
128
(
1
), pp.
188
195
.10.1115/1.2103093
8.
Wei
,
Y.
, and
Liu
,
S.
,
2019
, “
Nonlinear Dynamics Analysis of Rotor-Brush Seal System
,”
Trans. Can. Soc. Mech. Eng.
,
43
(
2
), pp.
209
220
.10.1139/tcsme-2018-0132
9.
Wei
,
Y.
, and
Liu
,
S.
,
2019
, “
Numerical Analysis of the Dynamic Behavior of a Rotor-Bearing-Brush Seal System With Bristle Interference
,”
J. Mech. Sci. Technol.
,
33
(
8
), pp.
3895
3899
.10.1007/s12206-019-0733-z
10.
Kang
,
Y.
,
Liu
,
M.
,
Hu
,
X.
,
Kao-Walter
,
S.
, and
Zhang
,
B.
,
2019
, “
Theoretical and Numerical Investigation Into Brush Seal Hysteresis Without Pressure Differential
,”
Adv. Compos. Lett.
,
28
, pp.
1
10
.10.1177/0963693519885386
11.
Stango
,
R. J.
,
Zhao
,
H.
, and
Shia
,
C. Y.
,
2003
, “
Analysis of Contact Mechanics for Rotor-Bristle Interference of Brush Seals
,”
ASME J. Tribol.
,
125
(
2
), pp.
414
421
.10.1115/1.1510879
12.
Basu
,
P.
,
Datta
,
A.
,
Loewenthal
,
R.
,
Short
,
J.
, and
Johnson
,
R.
,
1994
, “
Hysteresis and Bristle Stiffening Effects in Brush Seals
,”
J. Propul. Power
,
10
(
4
), pp.
569
575
.10.2514/3.23810
13.
Franceschini
,
G.
,
Morgan
,
J. J.
,
Jones
,
T. V.
, and
Gillespie
,
D. R. H.
,
2006
, “
A Slow-Speed Rotating Test Facility for Characterising the Stiffness of Brush Seals
,”
ASME
Paper No. GT2006-91335.10.1115/GT2006-91335
14.
Duran
,
E. T.
,
2022
, “
Brush Seal Contact Force Theory and Correlation With Tests
,”
Alexandria Eng. J.
,
61
(
4
), pp.
2925
2938
.10.1016/j.aej.2021.08.027
15.
Lattime
,
S. B.
,
Braun
,
M. J.
,
Choy
,
F. K.
,
Hendricks
,
R. C.
, and
Steinetz
,
B. M.
,
2002
, “
Rotating Brush Seal
,”
Int. J. Rotating Mach.
,
8
(
2
), pp.
153
160
.10.1155/S1023621X02000143
16.
Zheng
,
X.
,
2017
, “
Introduction of New Sealing Technologies for Steam Turbines
,”
Adv. Steam Turbines Mod. Power Plants
,
2017
, pp.
307
320
.10.1016/B978-0-08-100314-5.00014-2
17.
Mehan
,
R. L.
,
1959
, “
Irradiation of Haynes-25 and Inconel-X Compression Springs in High-Temperature High-Pressure Water
,”
ASME J. Basic Eng.
,
81
(
2
), pp.
226
232
.10.1115/1.4008425
18.
Fellenstein
,
J. A.
, and
Dellacorte
,
C.
,
1996
, “
A New Tribological Test for Candidate Brush Seal Materials Evaluation
,”
Tribol. Trans.
,
39
(
1
), pp.
173
179
.10.1080/10402009608983517
19.
Bayley
,
F. J.
, and
Long
,
C. A.
,
1993
, “
A Combined Experimental and Theoretical Study of Flow and Pressure Distributions in a Brush Seal
,”
ASME J. Eng. Gas Turbines Power
,
115
(
2
), pp.
404
410
.10.1115/1.2906723
20.
Turner
,
M. T.
,
Chew
,
J. W.
, and
Long
,
C. A.
,
1998
, “
Experimental Investigation and Mathematical Modeling of Clearance Brush Seals
,”
ASME J. Eng. Gas Turbines Power
,
120
(
3
), pp.
573
579
.10.1115/1.2818185
21.
Duran
,
E. T.
,
2020
, “
Oil Brush Seals in Turbomachinery: Flow Analyses and Closed-Form Solutions
,”
ASME J. Eng. Gas Turbines Power
,
142
(
10
), p.
101001
.10.1115/1.4048327
You do not currently have access to this content.