Abstract

To investigate the superposition effect of the leading edge (LE) film on the downstream film cooling under swirling inflow, numerical simulations with three vane models (vane with films on the leading edge only, vane with films on the pressure side (PS), and suction side (SS) only, full-film cooling vane), two inlet conditions (axial inlet and swirling inlet) are conducted. The results indicate that the leading edge is the area where the film is most affected by the swirling inflow. For full-film cooling vane, the film on the leading edge does not always improve or even reduce the downstream film cooling. Flow mechanism analysis shows that the velocity direction near the downstream wall is governed by the interaction between the direction of swirling inflow and the direction of film hole incidence on the leading edge. A new type of leading-edge film proposed by the author is also investigated, with the dividing line of the counterinclined film-hole row coinciding with the twisted stagnant line to ensure that all films are incident at angles inverse to the direction of the swirling inflow. The new leading-edge film successfully changes the velocity direction near the downstream wall and suppresses the deflecting effect on the downstream film. The new leading-edge film can increase the overall area-averaged cooling effectiveness (η) of the full-film cooling vane by 10%, 15%, 18% and reduce the inhomogeneity by 13%, 19%, 27% over the traditional design, as the coolant mass flow increases.

References

1.
Barringer
,
M. D.
,
Thole
,
K. A.
, and
Polanka
,
M. D.
, “
Effects of Combustor Exit Profiles on High Pressure Turbine Vane Aerodynamics and Heat Transfer
,”
ASME
Paper No. GT2006-90277.10.1115/GT2006-90277
2.
Barringer
,
M. D.
,
Thole
,
K. A.
, and
Polanka
,
M. D.
, “
Experimental Evaluation of an Inlet Profile Generator for High Pressure Turbine Tests
,”
ASME
Paper No. GT2006-90401.10.1115/GT2006-90401
3.
Correa
,
S. M.
,
1998
, “
Power Generation and Aeropropulsion Gas Turbines: From Combustion Science to Combustion Technology
,”
Symp. Combust.
,
27
(
2
), pp.
1793
1807
.10.1016/S0082-0784(98)80021-0
4.
Bauer
,
H. J.
,
2004
, “
New Low Emission Strategies and Combustor Designs for Civil Aeroengine Applications
,”
Prog. Comput. Fluid Dyn.
,
4
(
3/4/5
), p.
130
.10.1504/PCFD.2004.004081
5.
Bunker
,
R. S.
,
2007
, “
Gas Turbine Heat Transfer: Ten Remaining Hot Gas Path Challenges
,”
ASME J. Turbomach.
,
129
(
2
), pp.
193
201
.10.1115/1.2464142
6.
Qureshi
,
I.
,
Smith
,
A. D.
, and
Povey
,
T.
,
2013
, “
HP Vane Aerodynamics and Heat Transfer in the Presence of Aggressive Inlet Swirl
,”
ASME J. Turbomach.
,
135
(
2
), pp.
21040
21041
.10.1115/1.4006610
7.
Qureshi
,
I.
,
Beretta
,
A.
,
Chana
,
K.
, and
Povey
,
T.
,
2012
, “
Effect of Aggressive Inlet Swirl on Heat Transfer and Aerodynamics in an Unshrouded Transonic HP Turbine
,”
ASME J. Turbomach.
,
134
(
6
), p.
061023
.10.1115/1.4004876
8.
Barringer
,
M. D.
,
Thole
,
K. A.
, and
Polanka
,
M. D.
,
2009
, “
Effects of Combustor Exit Profiles on Vane Aerodynamic Loading and Heat Transfer in a High Pressure Turbine
,”
ASME J. Turbomach.
,
131
(
2
), pp.
285
295
.10.1115/1.2950051
9.
Barringer
,
M. D.
,
Thole
,
K. A.
,
Polanka
,
M. D.
,
Clark
,
J. P.
, and
Koch
,
P. J.
,
2009
, “
Migration of Combustor Exit Profiles Through High Pressure Turbine Vanes
,”
ASME J. Turbomach.
,
131
(
2
), p. 021010.10.1115/1.2950076
10.
Barringer
,
M.
,
Thole
,
K.
, and
Polanka
,
M.
,
2004
, “
Developing a Combustor Simulator for Investigating High Pressure Turbine Aerodynamics and Heat Transfer
,”
ASME
Paper No. GT2004-53613.10.1115/GT2004-53613
11.
Colban
,
W. F.
,
Lethander
,
A. T.
, and
Thole
,
K. A.
,
2002
, “
Combustor Turbine Interface Studies - Part 2: Flow and Thermal Field Measurements
,”
ASME
Paper No. GT2002-30527.10.1115/GT2002-30527
12.
Giller
,
L.
, and
Schiffer
,
H. P.
,
2012
, “
Interaction Between the Combustor Swirl and the High Pressure Stator of a Turbine
,”
ASME
Paper No. GT2012-69157.10.1115/GT2012-69157
13.
Wang
,
Z.
,
Wang
,
D.
,
Wang
,
Z.
, and
Feng
,
Z.
,
2018
, “
Heat Transfer Analyses of Film-Cooled HP Turbine Vane Considering Effects of Swirl and Hot Streak
,”
Appl. Therm. Eng.
,
142
, pp.
815
829
.10.1016/j.applthermaleng.2018.07.044
14.
Griffini
,
D.
,
Insinna
,
M.
, and
Salvadori
,
S.
,
2015
, “
The Effects of Inlet Swirl on Adiabatic Film Cooling Effectiveness and Net Heat Flux Reduction of a Heavily Film-Cooled Vane
,”
The 22nd International Symposium on Air Breathing Engines, Phoenix, AZ, Oct. 25–30, Paper No. ISABE2015-20218.
15.
Insinna
,
M.
,
Griffini
,
D.
,
Salvadori
,
S.
, and
Martelli
,
F.
,
2015
, “
On the Effect of an Aggressive Inlet Swirl Profile on the Aero Thermal Performance of a Cooled Vane
,”
Energy Procedia
,
81
, pp.
1113
1120
.10.1016/j.egypro.2015.12.133
16.
Bacci
,
T.
,
Becchi
,
R.
,
Picchi
,
A.
, and
Facchini
,
B.
,
2019
, “
Adiabatic Effectiveness on High Pressure Turbine Nozzle Guide Vanes Under Realistic Swirling Conditions
,”
ASME J. Turbomach.
,
141
(
1
), p.
011009
.10.1115/1.4041559
17.
Yin
,
H.
,
Qin
,
Y. M.
, and
Ren
,
J.
,
2013
, “
Effect of Inlet Swirl on the Model Leading Edge of Turbine Vane
,”
ASME
Paper No. GT2013-94471.10.1115/GT2013-94471
18.
Yin
,
H.
,
Liu
,
S.
, and
Feng
,
Y.
,
2015
, “
Experimental Test Rig for Combustor-Turbine Interaction Research and Test Results Analysis
,”
ASME
Paper No. GT2015-42209.10.1115/GT2015-42209
19.
Yin
,
H.
,
Ren
,
J.
, and
Jiang
,
H. D.
,
2012
, “
Effects of Inlet Swirl Condition on the Flow and Heat Transfer Performance of Gas Turbine Vane
,”
J. Eng. Thermophys.
,
33
(
11
), pp.
1868
1871
.
20.
Zhang
,
Y.
,
Li
,
Y.
,
Bian
,
X.
, and
Yuan
,
X.
,
2019
, “
Effects of Inlet Swirl on Pressure Side Film Cooling of Neighboring Vane Surface
,”
ASME J. Thermal Sci. Eng. Appl.
,
11
(
6
), p. 061008.10.1115/1.4043260
21.
Werschnik
,
H.
,
Hilgert
,
J.
,
Wilhelm
,
M.
,
Bruschewski
,
M.
, and
Schiffer
,
H.-P.
,
2017
, “
Influence of Combustor Swirl on Endwall Heat Transfer and Film Cooling Effectiveness at the Large Scale Turbine Rig
,”
ASME J. Turbomach.
,
139
(
8
), p.
081007
.10.1115/1.4035832
22.
Yao
,
C.
,
Zhu
,
H.
, and
Li
,
X.
,
2020
, “
Effect of Showerhead Injection of Leading Edge on Cooling Characteristics for Turbine Vane Pressure Side
,”
J. Aerosp. Power
,
35
(
4
), pp.
693
703
.10.13224/j.cnki.jasp.2020.04.003
You do not currently have access to this content.