Abstract

The stability of thermoacoustic systems is often regulated by the time delay between acoustic perturbations and corresponding heat release fluctuations. An accurate estimate of this value is of great importance in applications since even small modifications can introduce significant changes in the system behavior. Different studies show that the nonlinear delayed dynamics typical of these systems can be well captured with low-order models. In this work, a method is introduced to estimate the most likely value of the time delay of a single thermoacoustic mode from a measured acoustic pressure signal. The mode of interest is modeled by an oscillator equation, with a nonlinear delayed forcing term modeling the deterministic flame contribution and an additive white Gaussian noise to embed the stochastic combustion noise. Additionally, other thermoacoustic relevant parameters are estimated. The model accounts for a flame gain, for a flame saturation coefficient, for linear acoustic damping, and for the background combustion noise intensity. The pressure data time series is statistically analyzed and the set of unknown parameters is identified. Validation is performed with respect to synthetically generated time series and low order model simulations, for which the underlying delay is known a priori. A discussion follows about the accuracy of the method, in particular, a comparison with existing methods is drawn.

References

1.
Ghirardo
,
G.
,
Boudy
,
F.
, and
Bothien
,
M. R.
, June
2018
, “
Amplitude Statistics Prediction in Thermoacoustics
,”
J. Fluid Mech.
,
844
, pp.
216
246
.10.1017/jfm.2018.173
2.
Noiray
,
N.
, and
Schuermans
,
B.
,
2013
, “
Deterministic Quantities Characterizing Noise Driven Hopf Bifurcations in Gas Turbine Combustors
,”
Int. J. Non-Linear Mech.
,
50
, pp.
152
163
.10.1016/j.ijnonlinmec.2012.11.008
3.
Lieuwen
,
T. C.
,
2003
, “
Statistical Characteristics of Pressure Oscillations in a Premixed Combustor
,”
J. Sound Vib.
,
260
(
1
), pp.
3
17
.10.1016/S0022-460X(02)00895-7
4.
Roberts
,
J.
, and
Spanos
,
P.
,
1986
, “
Stochastic Averaging: An Approximate Method of Solving Random Vibration Problems
,”
Int. J. Non-Linear Mech.
,
21
(
2
), pp.
111
134
.10.1016/0020-7462(86)90025-9
5.
Bonciolini
,
G.
,
Boujo
,
E.
, and
Noiray
,
N.
,
2017
, “
Output-Only Parameter Identification of a Colored-Noise-Driven Van-der-Pol Oscillator: Thermoacoustic Instabilities as an Example
,”
Phys. Rev. E
,
95
(
6
), p.
062217
.10.1103/PhysRevE.95.062217
6.
Noiray
,
N.
, and
Denisov
,
A.
,
2017
, “
A Method to Identify Thermoacoustic Growth Rates in Combustion Chambers From Dynamic Pressure Time Series
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3843
3850
.10.1016/j.proci.2016.06.092
7.
Boujo
,
E.
, and
Noiray
,
N.
,
2017
, “
Robust Identification of Harmonic Oscillator Parameters Using the Adjoint Fokker–Planck Equation
,”
Proc. R. Soc. A Math., Phys. Eng. Sci.
,
473
(
2200
), p.
20160894
.10.1098/rspa.2016.0894
8.
Hummel
,
T.
,
Berger
,
F.
,
Stadlmair
,
N.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2018
, “
Extraction of Linear Growth and Damping Rates of High-Frequency Thermoacoustic Oscillations From Time Domain Data
,”
ASME J. Eng. Gas Turbines Power
,
140
(
5
), p.
051505
.10.1115/1.4038240
9.
GhirardoGant
,
G.
,
Boudy
,
F. F.
, and
Bothien
,
M. R.
,
2020
, “
Protection and Identification of Thermoacoustic Azimuthal Modes
,”
ASME
Paper No. GT2020-15354.10.1115/GT2020-15354
10.
Hagen
,
G.
,
2011
, “
Stochastic Averaging for Identification of Feedback Nonlinearities in Thermoacoustic Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
133
(
6
), p.
061017
.10.1115/1.4003799
11.
Noiray
,
N.
,
2017
, “
Linear Growth Rate Estimation From Dynamics and Statistics of Acoustic Signal Envelope in Turbulent Combustors
,”
ASME J. Eng. Gas Turbines Power
,
139
(
4
), p.
041503
.10.1115/1.4034601
12.
Mejia
,
D.
,
Miguel-Brebion
,
M.
, and
Selle
,
L.
,
2016
, “
On the Experimental Determination of Growth and Damping Rates for Combustion Instabilities
,”
Combust. Flame
,
169
, pp.
287
296
.10.1016/j.combustflame.2016.05.004
13.
Rayleigh
,
J.
,
1878
, “
The Explanation of Certain Acoustical Phenomena
,”
Nature
,
18
, pp.
319
321
.10.1038/018319a0
14.
Dowling
,
A. P.
, and
Stow
,
S. R.
,
2003
, “
Acoustic Analysis of Gas Turbine Combustors
,”
J. Propul. Power
,
19
(
5
), pp.
751
764
.10.2514/2.6192
15.
Ghirardo
,
G.
,
Juniper
,
M. P.
, and
Bothien
,
M. R.
,
2018
, “
The Effect of the Flame Phase on Thermoacoustic Instabilities
,”
Combust. Flame
,
187
, pp.
165
184
.10.1016/j.combustflame.2017.09.007
16.
Crawford
,
J.
, and
Lieuwen
,
T.
,
2010
, “
Time Delay and Noise Coupling in Limiting Control Effectiveness in Unstable Combustors
,”
AIAA
Paper No. 2010–1519.10.2514/6.2010-1519
17.
Subramanian
,
P.
,
Sujith
,
R. I.
, and
Wahi
,
P.
,
2013
, “
Subcritical Bifurcation and Bistability in Thermoacoustic Systems
,”
J. Fluid Mech.
,
715
, pp.
210
238
.10.1017/jfm.2012.514
18.
Garita
,
F.
,
Yu
,
H.
, and
Juniper
,
M.
,
2020
, “
Assimilation of Experimental Data to Create a Quantitatively-Accurate Reduced Order Thermoacoustic Model
,”
ASME J. Eng. Gas Turbines Power
, 143(2), p. 021008.10.1115/1.4048569
19.
Ghani
,
A.
,
Boxx
,
I.
, and
Noren
,
C.
,
2020
, “
Data-Driven Identification of Nonlinear Flame Models
,”
ASME J. Eng. Gas Turbines Power
,
142
(
12
), p.
121015
.10.1115/1.4049071
20.
Nielsen
,
J. N.
,
Madsen
,
H.
, and
Young
,
P. C.
,
2000
, “
Parameter Estimation in Stochastic Differential Equations: An Overview
,”
Annu. Rev. Control
,
24
(
1
), pp.
83
94
.10.1016/S1367-5788(00)00005-5
21.
Frieden
,
B. R.
,
2004
,
Science From Fisher Information: A Unification
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK; New York
.
22.
Mahmoud
,
A. A.
,
Dass
,
S. C.
,
Muthuvalu
,
M. S.
, and
Asirvadam
,
V. S.
,
2017
, “
Maximum Likelihood Inference for Univariate Delay Differential Equation Models With Multiple Delays
,”
Complexity
,
2017
, pp.
1
14
.10.1155/2017/6148934
23.
Mahmoud
,
A. A.
,
Dass
,
S. C.
, and
Muthuvalu
,
M. S.
,
2016
, “
A Maximum Likelihood Estimation Framework for Delay Logistic Differential Equation Model
,” AIP Conference Proceedings, Kuala Lumpur, Malaysia, p.
080001
.
24.
Pan
,
J.
,
Gray
,
A.
,
Greenhalgh
,
D.
, and
Mao
,
X.
,
2014
, “
Parameter Estimation for the Stochastic SIS Epidemic Model
,”
Stat. Infer. Stochastic Process.
,
17
(
1
), pp.
75
98
.10.1007/s11203-014-9091-8
25.
Wang
,
L.
, and
Cao
,
J.
,
2012
, “
Estimating Parameters in Delay Differential Equation Models
,”
J. Agric. Biol. Environ. Stat.
,
17
(
1
), pp.
68
83
.10.1007/s13253-011-0066-6
26.
Fleming
,
C. H.
,
Calabrese
,
J. M.
,
Mueller
,
T.
,
Olson
,
K. A.
,
Leimgruber
,
P.
, and
Fagan
,
W. F.
, May
2014
, “
Non-Markovian Maximum Likelihood Estimation of Autocorrelated Movement Processes
,”
Methods Ecology Evol.
,
5
(
5
), pp.
462
472
.10.1111/2041-210X.12176
27.
Kutoyants
,
Y.
,
2019
, “
On Nonparametric Estimation for SDE With Delay
,” epub.https://hal.archives-ouvertes.fr/hal-02367609
28.
Kutoyants
,
Y. A.
, June
2005
, “
On Delay Estimation for Stochastic Differential Equations
,”
Stochastics Dyn.
,
05
(
02
), pp.
333
342
.10.1142/S0219493705001444
29.
Chan
,
K. C.
,
Karolyi
,
G. A.
,
Longstaff
,
F. A.
, and
Sanders
,
A. B.
,
1992
, “
An Empirical Comparison of Alternative Models of the Short-Term Interest Rate
,”
J. Finance
,
47
(
3
), pp.
1209
1227
.10.1111/j.1540-6261.1992.tb04011.x
30.
Jagannathan
,
R.
,
Skoulakis
,
G.
, and
Wang
,
Z.
,
2002
, “
Generalized Methods of Moments: Applications in Finance
,”
J. Bus. Econ. Stat.
,
20
(
4
), pp.
470
481
.10.1198/073500102288618612
31.
Crocco
,
L.
,
1969
, “
Research on Combustion Instability in Liquid Propellant Rockets
,”
Symp. (Int.) Combust.
,
12
(
1
), pp.
85
99
.10.1016/S0082-0784(69)80394-2
32.
Küchler
,
U.
, and
Platen
,
E.
,
2000
, “
Strong Discrete Time Approximation of Stochastic Differential Equations With Time Delay
,”
Math. Comput. Simul.
,
54
(
1–3
), pp.
189
205
.10.1016/S0378-4754(00)00224-X
33.
Lagarias
,
J. C.
,
Reeds
,
J. A.
,
Wright
,
M. H.
, and
Wright
,
P. E.
,
1998
, “
Convergence Properties of the Nelder–Mead Simplex Method in Low Dimensions
,”
SIAM J. Optim.
,
9
(
1
), pp.
112
147
.10.1137/S1052623496303470
34.
Küchler
,
U.
, and
Platen
,
E.
, July
2002
, “
Weak Discrete Time Approximation of Stochastic Differential Equations With Time Delay
,”
Math. Comput. Simul.
,
59
(
6
), pp.
497
507
.10.1016/S0378-4754(01)00431-1
You do not currently have access to this content.