Abstract

Hydrogen-fired gas turbines can play an important role in carbon-neutral energy and industry sectors. However, the required demand-oriented supply of CO2-neutral hydrogen is technically and economically challenging. These challenges arise due to interdependencies between the volatility of renewable power generation, available hydrogen production capacities, available hydrogen storage capacities and the operational demands to be met by gas turbines. The present study aims to quantify these interdependencies by conducting a model-based analysis of an exemplary CHP system featuring a hydrogen-fired industrial gas turbine with on-site hydrogen production via electrolysis and on-site hydrogen storage. To identify the sought-after interdependencies, simulations featuring various system parameterizations are analyzed. If only local power surpluses are utilized for the operation of electrolyzers, the results show a nonlinear impact of both the hydrogen production capacity and the hydrogen storage capacity on the hydrogen-based gas turbine operation. Furthermore, the results indicate that an exclusive utilization of local power surpluses leads to limited periods of hydrogen-based gas turbine operation and low utilization rates of the hydrogen production and storage capacities. If additional power for the operation of electrolyzers is supplied by the grid, increased utilization rates and prolonged periods of hydrogen-based gas turbine operation can be achieved. However, to realize an overall reduction of CO2 emissions, this mode of operation requires the supply of large quantities of renewable power by the grid. The results of an additional economic assessment reveal that both investigated operational modes are not economically viable within the considered economic framework.

References

1.
Schellnhuber
,
H. J.
,
Rahmstorf
,
S.
, and
Winkelmann
,
R.
,
2016
, “
Why the Right Climate Target Was Agreed in Paris
,”
Nat. Clim. Change
,
6
(
7
), pp.
649
653
.10.1038/nclimate3013
2.
Umweltbundesamt
,
2019
, “
Daten Zur Umwelt: Daten Der Deutschen Berichterstattung Atmosphärischer Emissionen - Treibhausgase 1990–2017
,” Umweltbundesamt, Dessau-Roßlau, Germany, Report.
3.
Robinius
,
M.
,
Otto
,
A.
,
Heuser
,
P.
,
Welder
,
L.
,
Syranidis
,
K.
,
Ryberg
,
D. S.
,
Grube
,
T.
,
Markewitz
,
P.
,
Peters
,
R.
, and
Stolten
,
D.
,
2017
, “
Linking the Power and Transport Sectors - Part 1: The Principle of Sector Coupling
,”
Energies
,
10
(
7
), p.
956
.10.3390/en10070956
4.
Holttinen
,
H.
,
2005
, “
Impact of Hourly Wind Power Variations on the System Operation in the Nordic Countries
,”
Wind Energy
,
8
(
2
), pp.
197
218
.10.1002/we.143
5.
Sterner
,
M.
,
Gerhardt
,
N.
,
Saint-Drenan
,
Y.-M.
,
von Oehsen
,
A.
,
Hochloff
,
P.
,
Kocmajewski
,
M.
,
Jentsch
,
M.
,
Lichter
,
P.
,
Pape
,
C.
,
Bofinger
,
S.
, and
Rohrig
,
K.
,
2010
, “
Energiewirtschaftliche Bewertung Von Pumpspeicherkraftwerken Und Anderen Stromspeichern im Zukünftigen Stromversorgungssystem
,” Fraunhofer-Institut für Windenergie und Energiesystemtechnik IWES, Bremerhaven, Germany, Report.
6.
Elsner
,
P.
,
Fischedick
,
M.
, and
Sauer (Publ
.)
D. U.
,
2015
, Flexibilitätskonzepte Für Die Stromversorgung 2050: Technologien - Szenarien – Systemzusammenhänge (Schriftenreihe Energiesysteme der Zukunft), Munich, Germany.
7.
Lechner
,
C.
, and
Seume (Publ.)
,
J.
,
2010
,
Stationäre Gasturbinen
, Vol.
2
,
Springer-Verlag
,
Berlin Heidelberg, Germany
.
8.
Stolten
,
D.
, and
Emonts
,
B.
,
ed.,
2016
,
Hydrogen Science and Engineering
, Vol. 1,
Wiley-VCH Verlag
,
Weinheim, Germany
.
9.
Goldmeer
,
J.
,
2018
, “
Fuel Flexible Gas Turbines as Enablers for a Low or Reduced Carbon Energy Ecosystem
,” General Electric Company, Boston, MA, Report No.
GEA33861
.https://www.ge.com/content/dam/gepower/global/en_US/documents/fuel-flexibility/GEA33861%20-%20Fuel%20Flexible%20Gas%20Turbines%20as%20Enablers%20for%20a%20Low%20Carbon%20Energy%20Ecosystem.pdf
10.
Saidi
,
K.
,
Orth
,
U.
,
Boje
,
S.
, and
Ferekers
,
C.
,
2014
, “
A Comparative Study of Combined Heat and Power Systems for a Typical Food Industry Application
,”
ASME
Paper No. GT2014-26234.10.1115/GT2014-26234
11.
Branchini
,
L.
, and
Perez-Blanco
,
H.
,
2012
, “
Handling Wind Variability Using Gas Turbines
,”
ASME
Paper No. GT2012-68045.10.1115/GT2012-68045
12.
Seydel
,
C. G.
,
2015
, “
Performance Influences of Hydrogen Enriched Fuel on Heavy-Duty Gas Turbines in Combined Cycle Power Plants
,”
ASME
Paper No. GT2015-42018.10.1115/GT2015-42018
13.
Chiesa
,
P.
,
Lozza
,
G.
, and
Mazzocchi
,
L.
,
2005
, “
Using Hydrogen as Gas Turbine Fuel
,”
ASME J. Eng. Gas Turbine Power
,
127
(
1
), pp.
73
80
.10.1115/1.1787513
14.
Ebaid
,
M. S. Y.
,
Hammad
,
M.
, and
Alghamdi
,
T.
,
2015
, “
THERMO Economic Analysis of PV and Hydrogen Gas Turbine Hybrid Power Plant of 100 MW Power Output
,”
Int. J. Hydrogen Energy
,
40
(
36
), pp.
12120
12143
.10.1016/j.ijhydene.2015.07.077
15.
Bexten
,
T.
,
Lipperheide
,
M.
,
Wirsum
,
M.
,
Pei
,
L.
, and
Zheng
,
L.
,
2018
, “
A Comparative Study of Data and Physically Based Gas Turbine Modeling for Long-Term Monitoring Scenarios: Part I – Thermodynamic Performance Prediction Without Design Information
,”
ASME
Paper No. GT2018-76630.10.1115/GT2018-76630
16.
Siemens
,
A. G.
,
2015
, “
SGT-300 Industrial Gas Turbine
,” SIEMENS AG, Munich, Germany, Report.
17.
ETN
Global
,
2020
,
Hydrogen Gas Turbines
,
ETN Global
,
Brussels, Belgium, Report
.
18.
Thiemann
,
T.
,
2019
,
H2-Gasturbinen: Status Und Ausblick
,
Siemens AG
,
Munich, Germany, Report
.
19.
Larfeldt
,
J.
,
Andersson
,
M.
,
Larsson
,
A.
, and
Moell
,
D.
,
2017
, “
Hydrogen Co-Firing in Siemens Low NOx Industrial Gas Turbines
,”
Proceedings of POWER-GEN Europe
, Cologne, Germany, June 27–29, pp.
1
12
.https://www.semanticscholar.org/paper/Hydrogen-Co-Firing-in-Siemens-Low-NOX-Industrial-Larfeldt/37fd8e07212bf1e60f6db535d6e422b11880b816
20.
Tekin
,
N.
,
Ashikaga
,
M.
,
Horikawa
,
A.
, and
Harald
,
F.
,
2018
, “
Enhancement of Fuel Flexibility of Industrial Gas Turbines by Development of Innovative Hydrogen Combustion Systems
,”
Gas Energy
,
2
, pp.
1
6
.https://www.kawasaki-gasturbine.de/files/Hydrogen_as_fuel_for_GT.pdf
21.
Bothien
,
M. R.
,
Ciani
,
A.
,
Wood
,
J. P.
, and
Fruechtel
,
G.
,
2019
, “
Sequential Combustion in Gas Turbines: The Key Technology for Burning High Hydrogen Contents With Low Emissions
,”
ASME
Paper No. GT2019-90798.10.1115/GT2019-90798
22.
Bexten
,
T.
,
Jörg
,
S.
,
Petersen
,
N.
,
Wirsum
,
M.
,
Liu
,
P.
, and
Li
,
Z.
,
2020
, “
Model-Based Thermodynamic Analysis of a Hydrogen-Fired Gas Turbine With External Exhaust Gas Recirculation
,”
ASME
Paper No. GT2020-15486.10.1115/GT2020-15486
23.
Bexten
,
T.
,
Wirsum
,
M.
,
Roscher
,
B.
,
Schelenz
,
R.
,
Jacobs
,
G.
,
Weintraub
,
D.
, and
Jeschke
,
P.
,
2017
, “
Techno-Economic Study of Wind Farm Forecast Error Compensation by Flexible Heat-Driven CHP Units
,”
ASME
Paper No. GT2017-63557.10.1115/GT2017-63557
24.
ENERCON
GmbH
,
2016
,
ENERCON Produktübersicht
,
ENERCON GmbH
,
Aurich, Germany, Report
.
25.
Roscher
,
B.
,
Werkmeister
,
A.
,
Jacobs
,
G.
, and
Schelenz
,
R.
,
2017
, “
Modelling of Wind Turbine Loads Nearby a Wind Farm
,”
J. Phys.: Conf. Ser.
,
854
(
1
), p.
012038
.10.1088/1742-6596/854/1/012038
26.
Roscher
,
B.
,
Harzendorf
,
F.
,
Schelenz
,
R.
, and
Jacobs
,
G.
,
2018
, “
Reduced Levelized Cost of Energy Through Optimization of Tower Height, Rotor Diameter and Wind Farm Layout
,”
Am. J. Eng. Res.
,
7
(
4
), pp.
130
138
.http://www.ajer.org/papers/Vol-7-issue-4/Q0704130138.pdf
27.
Ulleberg
,
O.
,
2003
, “
Modeling of Advanced Alkaline Electrolyzers: A System Simulations Approach
,”
Int. J. Hydrogen Energy
,
28
(
1
), pp.
21
99
.10.1016/S0360-3199(02)00033-2
28.
Vetter (Publ. )
G.
,
1998
, “
Leckfreie Pumpen
,”
Verdichter Und Vakuumpumpen
,
Vulkan-Verlag
,
Essen, Germany
.
29.
Ruangpattana
,
S.
,
Klabjan
,
D.
,
Arinez
,
J.
, and
Biller
,
S.
,
2011
, “
Optimization of on-Site Renewable Energy Generation for Industrial Sites
,”
2011 IEEE/PES Power Systems Conference and Exposition
, Phoenix, AZ, Mar.
20
23
.10.1109/PSCE.2011.5772448
30.
Bundesnetzagentur für Elektrizität, Gas Telekommunikation, Post und Eisenbahnen,
2020
,
Bundesnetzagentur für Elektrizität, Gas Telekommunikation, Post und Eisenbahnen
, Monitoringbericht 2019, Bundesnetzagentur für Elektrizität, Gas Telekommunikation, Post und Eisenbahnen, Report.
31.
Burger
,
B.
,
2020
, “
Öffentliche Nettostromerzeugung in Deutschland im Jahr 2019
,” Fraunhofer-Institut für Solare Energiesysteme (ISE), Freiburg, Germany, Report.
32.
GmbH
,
N. O. W.
,
2018
, “
Studie IndWEDe - Industrialisierung Der Wassereleltrolyse in Deutschland: Chancen Und Herausforderungen Für Nachhaltigen Wasserstoff Für Verkehr
,”
Strom Und Wäreme
,
NOW GmbH
,
Berlin, Germany, Report
.
33.
Deutsche Energie-Agentur
,
2018
, “
Power to X: Strombezug
,” Deutsche Energie-Agentur, Berlin, Germany, Report.
You do not currently have access to this content.