Abstract

A pragmatic approach is adopted to investigate irreversible thermodynamic combined cycle devices. The finite-time thermodynamic model of combined Stirling-organic Rankine cycle is formulated and evaluated for maximum output power and thermal efficiency. The influence of effectiveness of heat exchangers, heat capacitance of external fluids, and inlet temperatures of heat exchangers at heat source, heat recovery unit and heat sink on the performance of Stirling-organic Rankine cycle are investigated to get their corresponding optimum. The maximum allowable heat capacitance of external fluids of heat source and heat recovery units are about 1.1 kW/K and 1.4 kW/K, respectively, for the operating conditions considered in the present study. The maximum power output is achieved only when the effectiveness of heat exchangers is ideal. The overall performance of Stirling-organic Rankine cycle combination will be higher than either of the performances of individual cycles provided that the isothermal heat rejection from Stirling cycle takes place at temperature above 540 K. Further, a 0.2 increase in the internal irreversibility parameter from an ideal/reversible condition reduced the maximum output power and the corresponding thermal efficiency of Stirling-organic Rankine cycle by 16.1 kW and 24%, respectively.

References

1.
International Energy Agency (IEA)
, 2020, “Renewables Information 2020 Overview,” IEA, Paris, France, accessed Aug. 2020, https://webstore.iea.org/renewables-information-overview-2020-edition
2.
Kongtragool
,
B.
, and
Wongwises
,
S.
,
2006
, “
Thermodynamic Analysis of a Stirling Engine Including Dead Volumes of Hot Space, Cold Space and Regenerator
,”
Renew. Energy
,
31
(
3
), pp.
345
359
.10.1016/j.renene.2005.03.012
3.
Stamford
,
L.
,
Greening
,
B.
, and
Azapagic
,
A.
,
2018
, “
Life Cycle Environmental and Economic Sustainability of Stirling Engine Micro-CHP Systems
,”
Energy Technol.
,
6
(
6
), pp.
1119
1138
.10.1002/ente.201700854
4.
Kong
,
X. Q.
,
Wang
,
R. Z.
, and
Huang
,
X. H.
,
2004
, “
Energy Efficiency and Economic Feasibility of CCHP Driven by Stirling Engine
,”
Energy Convers. Manag
,.,
45
(
9–10
), pp.
1433
1442
.10.1016/j.enconman.2003.09.009
5.
Chahartaghi
,
M.
, and
Sheykhi
,
M.
,
2019
, “
Energy, Environmental and Economic Evaluations of a CCHP System Driven by Stirling Engine With Helium and Hydrogen as Working Gases
,”
Energy
,
174
, pp.
1251
1266
.10.1016/j.energy.2019.03.012
6.
Wang
,
L.
,
Bu
,
X.
, and
Li
,
H.
,
2020
, “
Multi-Objective Optimization and Off-Design Evaluation of Organic Rankine Cycle (ORC) for Low-Grade Waste Heat Recovery
,”
Energy
,
203
, p.
117809
.10.1016/j.energy.2020.117809
7.
Sun
,
W.
,
Yue
,
X.
, and
Wang
,
Y.
,
2017
, “
Exergy Efficiency Analysis of ORC (Organic Rankine Cycle) and ORC-Based Combined Cycles Driven by Low-Temperature Waste Heat
,”
Energy Convers. Manag.
,
135
, pp.
63
73
.10.1016/j.enconman.2016.12.042
8.
Roedder
,
M.
,
Neef
,
M.
,
Laux
,
C.
, and
Priebe
,
K. P.
,
2016
, “
Systematic Fluid Selection for Organic Rankine Cycles and Performance Analysis for a Combined High and Low Temperature Cycle
,”
ASME J. Eng. Gas Turbines Power
,
138
(
3
), p.
031701
.10.1115/1.4031361
9.
Chen
,
W.
,
Feng
,
H.
,
Chen
,
L.
, and
Xia
,
S.
,
2018
, “
Optimal Performance Characteristics of Subcritical Simple Irreversible Organic Rankine Cycle
,”
J. Therm. Sci.
,
27
(
6
), pp.
555
562
.10.1007/s11630-018-1049-5
10.
Ingram-Goble
,
R.
,
2010
, “Modeling and Optimization of a Combined Cycle Stirling-Orc System and Design of an Integrated Microchannel Stirling Heat Rejector,”
Oregon State University
,
Corvallis, OR
, accessed Feb. 8, 2021, http://hdl.handle.net/1957/18824
11.
Bahrami
,
M.
,
Hamidi
,
A. A.
, and
Porkhial
,
S.
,
2013
, “
Investigation of the Effect of Organic Working Fluids on Thermodynamic Performance of Combined Cycle Stirling-ORC
,”
Int. J. Energy Environ. Eng.
,
4
(
1
), pp.
1
9
.10.1186/2251-6832-4-12
12.
Bahari
,
S. S.
,
Sameti
,
M.
,
Ahmadi
,
M. H.
, and
Haghgooyan
,
M. S.
,
2016
, “
Optimisation of a Combined Stirling Cycle–Organic Rankine Cycle Using a Genetic Algorithm
,”
Int. J. Ambient Energy
,
37
(
4
), pp.
398
402
.10.1080/01430750.2014.977497
13.
Kaushik
,
S. C.
,
Tyagi
,
S. K.
, and
Kumar
,
P.
,
2017
,
Finite Time Thermodynamics of Power and Refrigeration Cycles
, Springer International Publishing and Capital Publishing Company, New Delhi, India.
14.
Andresen
,
B.
,
Berry
,
R. S.
,
Ondrechen
,
M. J.
, and
Salamon
,
P.
,
1984
, “
Thermodynamics for Processes in Finite Time
,”
Acc. Chem. Res.
,
17
(
8
), pp.
266
271
.10.1021/ar00104a001
15.
Bejan
,
A.
,
1996
, “
Entropy Generation Minimization: The New Thermodynamics of Finite-Size Devices and Finite-Time Processes
,”
J. Appl. Phys.
,
79
(
3
), pp.
1191
1218
.10.1063/1.362674
16.
McMahan
,
A.
,
Klein
,
S. A.
, and
Reindl
,
D. T.
,
2007
, “
A Finite-Time Thermodynamic Framework for Optimizing Solar-Thermal Power Plants
,”
ASME J. Sol. Energy Eng. Trans.
,
129
(
4
), pp.
355
362
.10.1115/1.2769689
17.
Patel
,
V. K.
,
Savsani
,
V. J.
, and
Tawhid
,
M. A.
,
2019
,
Thermal System Optimization
, Springer International Publishing, Springer Nature Switzerland AG, Cham, Switzerland.
18.
Chen
,
L.
,
Wu
,
C.
, and
Sun
,
F.
,
1999
, “
Finite Time Thermodynamic Optimization or Entropy Generation Minimization of Energy Systems
,”
J. Non-Equilibrium Thermodyn.
,
24
(
4
), pp.
327
359
.10.1515/JNETDY.1999.020
19.
Chen
,
Z.
,
Copeland
,
C.
,
Ceen
,
B.
,
Jones
,
S.
, and
Agurto Goya
,
A.
,
2017
, “
Modeling and Simulation of an Inverted Brayton Cycle as an Exhaust-Gas Heat-Recovery System
,”
ASME J. Eng. Gas Turbines Power
,
139
(
8
), p.
081701
.10.1115/1.4035738
20.
Ge
,
Y.
,
Chen
,
L.
, and
Sun
,
F.
,
2016
, “
Progress in Finite Time Thermodynamic Studies for Internal Combustion Engine Cycles
,”
Entropy
,
18
(
4
), p.
139
.10.3390/e18040139
21.
Ramachandran
,
S.
,
Kumar
,
N.
, and
Timmaraju
,
M. V.
,
2020
, “
Thermodynamic Analysis of Solar Low-Temperature Differential Stirling Engine Considering Imperfect Regeneration and Thermal Losses
,”
ASME J. Sol. Energy Eng.
,
142
(
5
), p. 051012. 10.1115/1.4046629
22.
Ahmadi
,
M. H.
,
Sayyaadi
,
H.
,
Dehghani
,
S.
, and
Hosseinzade
,
H.
,
2013
, “
Designing a Solar Powered Stirling Heat Engine Based on Multiple Criteria: Maximized Thermal Efficiency and Power
,”
Energy Convers. Manag.
,
75
, pp.
282
291
.10.1016/j.enconman.2013.06.025
23.
Yaqi
,
L.
,
Yaling
,
H.
, and
Weiwei
,
W.
,
2011
, “
Optimization of Solar-Powered Stirling Heat Engine With Finite-Time Thermodynamics
,”
Renew. Energy
,
36
(
1
), pp.
421
427
.10.1016/j.renene.2010.06.037
24.
Kaushik
,
S. C.
, and
Kumar
,
S.
,
2001
, “
Finite Time Thermodynamic Evaluation of Irreversible Ericsson and Stirling Heat Engines
,”
Energy Convers. Manag.
,
42
(
3
), pp.
295
312
.10.1016/S0196-8904(00)00063-7
25.
Tlili
,
I.
,
2012
, “
Finite Time Thermodynamic Evaluation of Endoreversible Stirling Heat Engine at Maximum Power Conditions
,”
Renew. Sustain. Energy Rev.
,
16
(
4
), pp.
2234
2241
.10.1016/j.rser.2012.01.022
26.
Wang
,
X.
,
Liu
,
X.
, and
Zhang
,
C.
,
2013
, “
Performance Analysis of Organic Rankine Cycle With Preliminary Design of Radial Turbo Expander for Binary-Cycle Geothermal Plants
,”
ASME J. Eng. Gas Turbines Power
,
135
(
11
), p.
111402
.10.1115/1.4025040
27.
Wu
,
Z.
,
Sha
,
L.
,
Zhao
,
M.
,
Wang
,
X.
,
Ma
,
H.
, and
Zhang
,
Y.
,
2020
, “
Performance Analyses and Optimization of a Reverse Carnot Cycle-Organic Rankine Cycle Dual-Function System
,”
Energy Convers. Manag.
,
212
(
March
), p.
112787
.10.1016/j.enconman.2020.112787
28.
Feng
,
H.
,
Chen
,
W.
,
Chen
,
L.
, and
Tang
,
W.
,
2020
, “
Power and Efficiency Optimizations of an Irreversible Regenerative Organic Rankine Cycle
,”
Energy Convers. Manag.
,
220
(
March
), p.
113079
.10.1016/j.enconman.2020.113079
29.
Swanson
,
L. W.
,
1991
, “
Thermodynamic Optimization of Irreversible Power Cycles With Constant External Reservoir Temperatures
,”
ASME J. Eng. Gas Turbines Power
, 113(4), pp. 505–510.10.1115/1.2906269
30.
Wu
,
Z.
,
Feng
,
H.
,
Chen
,
L.
,
Tang
,
W.
,
Shi
,
J.
, and
Ge
,
Y.
,
2020
, “
Constructal Thermodynamic Optimization for Ocean Thermal Energy Conversion System With Dual-Pressure Organic Rankine Cycle
,”
Energy Convers. Manag.
,
210
(
March
), p.
112727
.10.1016/j.enconman.2020.112727
31.
Chen
,
L. G.
,
Meng
,
F. K.
, and
Sun
,
F. R.
,
2016
, “
Thermodynamic Analyses and Optimization for Thermoelectric Devices: The State of the Arts
,”
Sci. China Technol. Sci.
,
59
(
3
), pp.
442
455
.10.1007/s11431-015-5970-5
32.
Dai
,
D. D.
,
Yuan
,
F.
,
Long
,
R.
,
Liu
,
Z. C.
, and
Liu
,
W.
,
2018
, “
Imperfect Regeneration Analysis of Stirling Engine Caused by Temperature Differences in Regenerator
,”
Energy Convers. Manag.
,
158
(
December 2017
), pp.
60
69
.10.1016/j.enconman.2017.12.032
You do not currently have access to this content.