Abstract

In this paper, we examine the energy absorption and containment capabilities of a newly proposed dual-ring design accounting for interactions between a released blade and fully bladed fan disk using three-dimensional finite element analysis. The components of this dual-ring design are strategically selected to ensure high energy absorption and high impact resistance, thus leading to reduced damage of the disk and increased safety. Three containment ring designs are examined: (i) conventional single-ring design composed of one of titanium, aluminum, or Kevlar; (ii) a newly proposed aluminum-Kevlar dual-ring arrangement; and (iii) dual-ring arrangement with an interfacial gap between them to arrest and contain the released blade and ensure free passage of the trailing blades. The results of our numerical simulations indicate that although the single-ring design resists penetration and contains the released blade within the confines of the disk, it does not remove the released blade from the path of the trailing blades leading to severe damage to the fan disk. On the contrary, our new dual-ring design, which contains an interfacial gap, has potential to successfully arrest the released blade within the confines of the ring and out of the path of the trailing blades. This design can significantly reduce the impact damage to the fan disk and reduce kinetic energy of the released blade to near zero in less than half a rotation of the fan disk.

References

1.
ATSB
,
2013
, “
In-Flight Uncontained Engine Failure Airbus A380-842, VH-OQA
,” Australian Transport Safety Bureau, Canberra, Australia, Report No.
AO-2010-089
.https://www.atsb.gov.au/publications/investigation_reports/2010/aair/ao-2010-089.aspx
2.
NTSB
,
2016
, “
Uncontained Engine Failure and Subsequent Fire, American Airlines Flight 383, Boeing 767-323, N345AN, Chicago, Illinois, October 28, 2016
,” National Transportation Safety Board, Washington, DC, Report No.
NTSB/AAR-18/01
.https://www.ntsb.gov/investigations/AccidentReports/Reports/AAR1801.pdf
3.
NTSB
,
2018
, “
Left Engine Failure and Subsequent Depressurization, Southwest Airlines Flight 1380, Boeing 737-7H4, N772SW
,” National Transportation Safety Board, Washington, DC, Report No.
NTSB/AAR-19/03
.https://www.ntsb.gov/news/events/Pages/2019-DCA18MA142-BMG.aspx
4.
Hradecky
,
S.
,
2018
, “
Accident: France A388 Over Greenland on Sep 30th 2017, Uncontained Engine Failure, Fan and Engine Inlet Separated
,”
The Aviation Herald
, accessed September 20, 2020, http://avherald.com/h?article=4af15205
5.
Knight
,
N. F.
, Jr.
,
Jaunky
,
N.
,
Lawson
,
R. E.
, and
Ambur
,
D. R.
,
2000
, “
Penetration Simulation for Uncontained Engine Debris Impact on Fuselage-Like Panels Using LS-DYNA
,”
Finite Elem. Anal. Des.
,
36
(
2
), pp.
99
133
.10.1016/S0168-874X(00)00011-1
6.
Teng
,
X.
, and
Wierzbicki
,
T.
,
2008
, “
Gouging and Fracture of Engine Containment Structure Under Fragment Impact
,”
J. Aerosp. Eng.
,
21
(
3
), pp.
174
248
.10.1061/(ASCE)0893-1321(2008)21:3(174)
7.
Sinha
,
S. K.
,
Turner
,
K. E.
, and
Jain
,
N.
,
2011
, “
Dynamic Loading on Turbofan Blades Due to Bird-Strike
,”
ASME J. Eng. Gas Turbines Power
,
133
(
12
), p.
122504
.10.1115/1.4004126
8.
Lyons
,
T.
, and
D'souza
,
K.
,
2019
, “
Parametric Study of a Unmanned Aerial Vehicle Ingestion Into a Business Jet Size Fan Assembly Model
,”
ASME J. Eng. Gas Turbines Power
,
141
(
7
), p.
071002
.10.1115/1.4042286
9.
Jain
,
R.
,
2010
, “
Prediction of Transient Loads and Perforation of Engine Casing During Blade-Off Event of Fan Rotor Assembly
,”
Proceedings of the IMPLAST 2010 Conference
, Providence, RI, Oct. 12–14, pp.
1
10
.https://www.semanticscholar.org/paper/Prediction-of-Transient-Loads-and-Perforation-of-of-Jain/57df15bb812ff230b24fb774c500d117811b585c
10.
Gálvez
,
F.
,
Cendón
,
D. A.
,
Enfedaque
,
A.
, and
Sánchez-Galvez
,
V.
,
2006
, “
Materials Behaviour and Numerical Simulation of a Turbine Blade-Off Containment Analysis
,”
WIT Trans. Built Environ.
,
87
, pp.
433
444
.10.2495/SU060421
11.
He
,
Q.
,
Xuan
,
H.
,
Liu
,
L.
,
Hong
,
W.
, and
Wu
,
R.
,
2013
, “
Perforation of Aero-Engine Fan Casing by a Single Rotating Blade
,”
Aerosp. Sci. Technol.
,
25
(
1
), pp.
234
241
.10.1016/j.ast.2012.01.010
12.
He
,
Q.
,
Xie
,
Z.
,
Xuan
,
H.
,
Liu
,
L.
, and
Hong
,
W.
,
2016
, “
Multi-Blade Effects on Aero-Engine Blade Containment
,”
Aerosp. Sci. Technol.
,
49
, pp.
101
111
.10.1016/j.ast.2015.11.037
13.
Eryilmaz
,
I.
,
Guenchi
,
B.
, and
Pachidis
,
V.
,
2019
, “
Multi-Blade Shedding in Turbines With Different Casing and Blade Tip Architectures
,”
Aerosp. Sci. Technol.
,
87
, pp.
300
310
.10.1016/j.ast.2019.02.025
14.
Qiu
,
J.
,
Shi
,
J.
,
Su
,
H.
,
Zhang
,
J.
,
Feng
,
J.
,
Shi
,
Q.
, and
Tian
,
X.
,
2017
, “
Fatigue Lifespan of Engine Box Influenced by Fan Blade Out
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
265
, p.
012026
.10.1088/1757-899X/265/1/012026
15.
Heidari
,
M.
,
Carlson
,
D.
,
Sinha
,
S.
,
Sadeghi
,
R.
,
Heydari
,
C.
,
Bayoumi
,
H.
, and
Son
,
J.
,
2008
, “
An Efficient Multi-Disciplinary Simulation of Engine Fan-Blade Out Event Using MD Nastran
,”
AIAA
Paper No. 2008-2333.10.2514/6.2008-2333
16.
Sinha
,
S. K.
, and
Dorbala
,
S.
,
2009
, “
Dynamic Loads in the Fan Containment Structure of a Turbofan Engine
,”
J. Aerosp. Eng.
,
22
(
3
), pp.
260
269
.10.1061/(ASCE)0893-1321(2009)22:3(260)
17.
Naik
,
D.
,
Sankaran
,
S.
,
Mobasher
,
B.
,
Rajan
,
S. D.
, and
Pereira
,
J. M.
,
2009
, “
Development of Reliable Modeling Methodologies for Engine Fan Blade Out Containment Analysis—Part I: Experimental Studies
,”
Int. J. Impact Eng.
,
36
(
1
), pp.
1
11
.10.1016/j.ijimpeng.2008.03.007
18.
Stahlecker
,
Z.
,
Mobasher
,
B.
,
Rajan
,
S. D.
, and
Pereira
,
J. M.
,
2009
, “
Development of Reliable Modeling Methodologies for Engine Fan Blade Out Containment Analysis—Part II: Finite Element Analysis
,”
Int. J. Impact Eng.
,
36
(
3
), pp.
447
459
.10.1016/j.ijimpeng.2008.08.004
19.
Zhu
,
D.
,
Mobasher
,
B.
, and
Rajan
,
S. D.
,
2011
, “
Dynamic Tensile Testing of Kevlar 49 Fabrics
,”
J. Mater. Civ. Eng.
,
23
(
3
), pp.
230
239
.10.1061/(ASCE)MT.1943-5533.0000156
20.
Zhu
,
D.
,
Vaidya
,
A.
,
Mobasher
,
B.
, and
Rajan
,
S. D.
,
2014
, “
Finite Element Modeling of Ballistic Impact on Multi-Layer Kevlar 49 Fabrics
,”
Compos. Part B
,
56
, pp.
254
262
.10.1016/j.compositesb.2013.08.051
21.
Rajan
,
S. D.
,
Mobasher
,
B.
,
Vaidya
,
A.
,
Zhu
,
D.
,
Fein
,
J.
, and
Deivanayagam
,
A.
,
2014
, “
Explicit Finite Element Modeling of Multilayer Composite Fabric for Gas Turbine Engine Containment Systems, Phase IV
,” U.S. Department of Transportation, Washington, DC, Report No.
DOT/FAA/TC-13/37
.http://www.tc.faa.gov/its/worldpac/techrpt/TC13-37.pdf
22.
Rajan
,
S. D.
,
Mobasher
,
B.
,
Stahlecker
,
Z.
,
Bansal
,
S.
,
Zhu
,
D.
,
Morea
,
M.
, and
Dhandapani
,
K.
,
2011
, “
Explicit Finite Element Modeling of Multilayer Composite Fabric for Gas Turbine Engine Containment Systems, Phase III—Part 2: Arizona State University Fabric Material Tests
,” U.S. Department of Transportation, Washington, DC, Report No.
DOT/FAA/AR-10/23,P2
.http://www.tc.faa.gov/its/worldpac/techrpt/ar1023p2.pdf
23.
Rajan
,
S. D.
,
Mobasher
,
B.
,
Stahlecker
,
Z.
,
Bansal
,
S.
,
Zhu
,
D.
,
Morea
,
M.
, and
Dhandapani
,
K.
,
2011
, “
Explicit Finite Element Modeling of Multilayer Composite Fabric for Gas Turbine Engine Containment Systems, Phase III—Part 1: Arizona State University Material Model and Numerical Simulations
,” U.S. Department of Transportation, Washington, DC, Report No.
DOT/FAA/AR-10/23,P1
.http://www.tc.faa.gov/its/worldpac/techrpt/ar1023p1.pdf
24.
Simons
,
J.
,
Erlich
,
D.
, and
Shockey
,
D.
,
2009
, “
Explicit Finite Element Modeling of Multilayer Composite Fabric for Gas Turbine Engine Containment Systems, Phase II—Part 3: Material Model Development and Simulation of Experiments
,” U.S. Department of Transportation, Washington, DC, Report No.
DOT/FAA/AR-08/37,P3
.http://www.tc.faa.gov/its/worldpac/techrpt/ar0837p3.pdf
25.
Revilock
,
D. M.
, and
Pereira
,
J. M.
,
2009
, “
Explicit Finite Element Modeling of Multilayer Composite Fabric for Gas Turbine Engine Containment Systems, Phase II—Part 2: Ballistic Impact Testing
,” U.S. Department of Transportation, Washington, DC, Report No.
DOT/FAA/AR-08/37,P2
.http://www.tc.faa.gov/its/worldpac/techrpt/ar0837p2.pdf
26.
Vinitilescu
,
I. V.
,
2009
, “
Explicit Finite Element Modeling of Multilayer Composite Fabric for Gas Turbine Engine Containment Systems, Phase II—Part 4: Model Simulation for Ballistic Tests, Engine Fan Blade-Out, and Generic Engine
,” U.S. Department of Transportation, Washington, DC, Report No.
DOT/FAA/AR-08/37,P4
.http://www.tc.faa.gov/its/worldpac/techrpt/ar0837p4.pdf
27.
Rajan
,
S.
,
Mobasher
,
B.
,
Sankaran
,
S.
,
Naik
,
D.
, and
Stahlecker
,
Z.
,
2009
, “
Explicit Finite Element Modeling of Multilayer Composite Fabric for Gas Turbine Engine Containment Systems, Phase II—Part 1: Fabric Material Tests and Modeling
,” U.S. Department of Transportation, Washington, DC, Report No.
DOT/FAA/AR-08/37,P1
.http://www.tc.faa.gov/its/worldpac/techrpt/ar0837p1.pdf
28.
Roy
,
P. A.
, and
Meguid
,
S. A.
,
2020
, “
Modeling and Characterization of Bilayer Containment Ring in Gas Turbine Engine
,”
Int. J. Comput. Methods Eng. Sci. Mech.
,
21
(
2
), pp.
96
108
.10.1080/15502287.2020.1739779
29.
Meguid
,
S. A.
,
Attia
,
M. S.
, and
Monfort
,
A.
,
2004
, “
On the Crush Behaviour of Ultralight Foam-Filled Structures
,”
Mater. Des.
,
25
(
3
), pp.
183
189
.10.1016/j.matdes.2003.10.006
30.
Attia
,
M. S.
,
Meguid
,
S. A.
, and
Nouraei
,
H.
,
2012
, “
Nonlinear Finite Element Analysis of the Crush Behaviour of Functionally Graded Foam-Filled Columns
,”
Finite Elem. Anal. Des.
,
61
, pp.
50
59
.10.1016/j.finel.2012.06.004
31.
Meguid
,
S. A.
,
Yang
,
F.
, and
Hou
,
P.
,
2016
, “
Crush Behaviour of Foam-Filled Thin-Walled Conical Frusta: Analytical, Numerical and Experimental Studies
,”
Acta Mech.
,
227
(
12
), pp.
3391
3406
.10.1007/s00707-016-1662-x
32.
Sengoz
,
K.
,
Kan
,
S.
, and
Eskandarian
,
A.
,
2015
, “
Development of a Generic Gas Turbine Engine Fan Blade-Out Full-Fan Rig Model
,” U.S. Department of Transportation, Washington, DC, Report No.
DOT/FAA/TC-14/43
.http://www.tc.faa.gov/its/worldpac/techrpt/tc14-43.pdf
33.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Proc. Seventh Int. Symp. Ballist.
,
21
(
1
), pp.
541
547
.https://www.semanticscholar.org/paper/A-CONSTITUTIVE-MODEL-AND-DATA-FOR-METALS-SUBJECTED-Johnson-Cook/40b24ee656f8f82a1927338117cd1999c96517a7?p2df
34.
Haight
,
S.
,
Wang
,
L.
,
Du Bois
,
P.
,
Carney
,
K.
, and
Kan
,
C.
,
2016
, “
Development of a Titanium Alloy Ti-6Al-4V Material Model Used in LS-DYNA
,” U.S. Department of Transportation, Washington, DC, Report No.
DOT/FAA/TC-15/23
.http://www.tc.faa.gov/its/worldpac/techrpt/tc15-23.pdf
35.
Buyuk
,
M.
,
2014
, “
Development of a New Metal Material Model in LS-DYNA—Part 2: Development of a Tabulated Thermo-Viscoplastic Material Model With Regularized Failure for Dynamic Ductile Failure Prediction of Structures Under Impact Loading
,” U.S. Department of Transportation, Washington, DC, Report No.
DOT/FAA/TC-13/25,P2
.http://www.tc.faa.gov/its/worldpac/techrpt/tc13-25p2.pdf
36.
Hajializadeh
,
F.
, and
Mashhadi
,
M. M.
,
2015
, “
Investigation and Numerical Analysis of Impulsive Hydroforming of Aluminum 6061-T6 Tube
,”
J. Manuf. Process.
,
20
, pp.
257
273
.10.1016/j.jmapro.2015.06.027
37.
Gilioli
,
A.
,
Manes
,
A.
,
Giglio
,
M.
, and
Wierzbicki
,
T.
,
2015
, “
Predicting Ballistic Impact Failure of Aluminium 6061-T6 With the Rate-Independent Bao-Wierzbicki Fracture Model
,”
Int. J. Impact Eng.
,
76
, pp.
207
220
.10.1016/j.ijimpeng.2014.10.004
38.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1985
, “
Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures
,”
Eng. Fract. Mech.
,
21
(
1
), pp.
31
48
.10.1016/0013-7944(85)90052-9
39.
Meguid
,
S. A.
,
Cheon
,
S. S.
, and
El-Abbasi
,
N.
,
2002
, “
FE Modelling of Deformation Localization in Metallic Foams
,”
Finite Elem. Anal. Des.
,
38
(
7
), pp.
631
643
.10.1016/S0168-874X(01)00096-8
40.
Czekanski
,
A.
,
Elbestawi
,
M. A.
, and
Meguid
,
S. A.
,
2005
, “
On the FE Modeling of Closed-Cell Aluminum Foam
,”
Int. J. Mech. Mater. Des.
,
2
(
1–2
), pp.
23
34
.10.1007/s10999-005-0518-7
41.
Yu
,
C.-J.
,
Eifert
,
H. H.
,
Banhart
,
J.
, and
Baumeister
,
J.
,
1998
, “
Metal Foaming by a Powder Metallurgy Method: Production, Properties and Applications
,”
Mater. Res. Innov.
,
2
(
3
), pp.
181
188
.10.1007/s100190050082
42.
Jiang
,
B.
,
Wang
,
Z.
, and
Zhao
,
N.
,
2007
, “
Effect of Pore Size and Relative Density on the Mechanical Properties of Open Cell Aluminum Foams
,”
Scr. Mater.
,
56
(
2
), pp.
169
172
.10.1016/j.scriptamat.2006.08.070
43.
Cho
,
J. U.
,
Hong
,
S. J.
,
Lee
,
S. K.
, and
Cho
,
C.
,
2012
, “
Impact Fracture Behavior at the Material of Aluminum Foam
,”
Mater. Sci. Eng. A
,
539
, pp.
250
258
.10.1016/j.msea.2012.01.091
44.
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2000
, “
High Strain Rate Compressive Behaviour of Aluminium Alloy Foams
,”
Int. J. Impact Eng.
,
24
(
3
), pp.
277
298
.10.1016/S0734-743X(99)00153-0
45.
Cowper
,
G. R.
, and
Symonds
,
P. S.
,
1957
, “
Strain-Hardening and Strain-Rate Effects in the Impact Loading of Cantilever Beams
,” Brown University, Providence, RI, Report No.
TR-C11-28
.https://apps.dtic.mil/dtic/tr/fulltext/u2/144762.pdf
You do not currently have access to this content.