Abstract

The intrinsic thermoacoustic (ITA) feedbackloop constitutes a coupling between flow, flame and acoustics that does not involve the natural acoustic modes of the system. One recent study showed that ITA modes in annular combustors come in significant number and with the peculiar behavior of clusters, i.e. several modes with close frequencies. In the present work, an analytical model of a typical annular combustor is derived via Riemann invariants and Bloch theory. The resulting formulation describes the full annular system as a longitudinal combustor with an outlet reflection coefficient that depends on frequency and the azimuthal mode order. The model explains the underlying mechanism of the clustering phenomena and the structure of the clusters associated with ITA modes of different azimuthal orders. In addition, a phasor analysis is proposed, which encloses the conditions for which the 1D model remains valid when describing the thermoacoustic behavior of an annular combustor.

References

1.
Lieuwen
,
T.
, and
McManus
,
K.
,
2003
, “
Introduction: Combustion Dynamics in Lean-Premixed Prevaporized (LPP) Gas Turbines
,”
J. Propul. Power
,
19
(
5
), pp.
721
721
.10.2514/2.6171
2.
Poinsot
,
T.
,
2017
, “
Prediction and Control of Combustion Instabilities in Real Engines
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
1
28
.10.1016/j.proci.2016.05.007
3.
Lieuwen
,
T.
, and
Yang
,
V.
, eds.,
2005
,
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms and Modeling
, Progress in Astronautics and Aeronautics. American Institute of Aeronautics and Astronautics, Reston, VA, No. v. 210.10.2514/5.9781600866807.0000.0000
4.
Bomberg
,
S.
,
Emmert
,
T.
, and
Polifke
,
W.
,
2015
, “
Thermal Versus Acoustic Response of Velocity Sensitive Premixed Flames
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3185
3192
.10.1016/j.proci.2014.07.032
5.
Gentemann
,
A.
, and
Polifke
,
W.
,
2007
, “
Scattering and Generation of Acoustic Energy by a Premix Swirl Burner
,”
ASME
Paper No. GT2007-27238.10.1115/GT2007-27238
6.
Polifke
,
W.
,
2011
, “
Thermo-Acoustic Instability Potentiality of a Premix Burner
,”
European Combustion Meeting, ECM2011
,
British Section of the Combustion Institute
, Cardiff, UK, June 27–July 1.https://www.researchgate.net/publication/255738407_Thermo-acoustic_instability_potentiality_of_a_premix_burners
7.
Emmert
,
T.
,
Bomberg
,
S.
, and
Polifke
,
W.
,
2015
, “
Intrinsic Thermoacoustic Instability of Premixed Flames
,”
Combust. Flame
,
162
(
1
), pp.
75
85
.10.1016/j.combustflame.2014.06.008
8.
Hoeijmakers
,
M.
,
Lopez Arteaga
,
I.
,
Kornilov
,
V.
,
Nijmeijer
,
H.
, and
de Goey
,
P.
,
2013
, “
Experimental Investigation of Intrinsic Flame Stability
,”
European Combustion Meeting, ECM2013
,
Scandinavian-Nordic Section of the Combustion Institute
, Lund, Sweden, June
25
28
.https://research.tue.nl/en/publications/experimental-investigation-of-intrinsic-flame-stability
9.
Hoeijmakers
,
M.
,
Kornilov
,
V.
,
Lopez Arteaga
,
I.
,
de Goey
,
P.
, and
Nijmeijer
,
H.
,
2014
, “
Intrinsic Instability of Flame-Acoustic Coupling
,”
Combust. Flame
,
161
(
11
), pp.
2860
2867
.10.1016/j.combustflame.2014.05.009
10.
Silva
,
C. F.
,
Emmert
,
T.
,
Jaensch
,
S.
, and
Polifke
,
W.
,
2015
, “
Numerical Study on Intrinsic Thermoacoustic Instability of a Laminar Premixed Flame
,”
Combust. Flame
,
162
(
9
), pp.
3370
3378
.10.1016/j.combustflame.2015.06.003
11.
Courtine
,
E.
,
Selle
,
L.
, and
Poinsot
,
T.
,
2015
, “
DNS of Intrinsic Thermoacoustic Modes in Laminar Premixed Flames
,”
Combust. Flame
,
162
(
11
), pp.
4331
4341
.10.1016/j.combustflame.2015.07.002
12.
Emmert
,
T.
,
Bomberg
,
S.
,
Jaensch
,
S.
, and
Polifke
,
W.
,
2017
, “
Acoustic and Intrinsic Thermoacoustic Modes of a Premixed Combustor
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3835
3842
.10.1016/j.proci.2016.08.002
13.
Lieuwen
,
T. C.
,
2012
,
Unsteady Combustor Physics
,
Cambridge University Press
,
New York
.
14.
Dowling
,
A. P.
, and
Stow
,
S. R.
,
2003
, “
Acoustic Analysis of Gas Turbine Combustors
,”
J. Propul. Power
,
19
(
5
), pp.
751
764
.10.2514/2.6192
15.
Mukherjee
,
N.
, and
Shrira
,
V.
,
2017
, “
Intrinsic Flame Instabilities in Combustors: Analytic Description of a 1-D Resonator Model
,”
Combust. Flame
,
185
, pp.
188
209
.10.1016/j.combustflame.2017.07.012
16.
Eckstein
,
J.
, and
Sattelmayer
,
T.
,
2006
, “
Low-Order Modeling of Low-Frequency Combustion Instabilities in Aeroengines
,”
J. Propul. Power
,
22
(
2
), pp.
425
432
.10.2514/1.15757
17.
Ghani
,
A.
,
Steinbacher
,
T.
,
Albayrak
,
A.
, and
Polifke
,
W.
,
2019
, “
Intrinsic Thermoacoustic Feedback Loop in Turbulent Spray Flames
,”
Combust. Flame
,
205
(
7
), pp.
22
32
.10.1016/j.combustflame.2019.03.039
18.
Albayrak
,
A.
,
Steinbacher
,
T.
,
Komarek
,
T.
, and
Polifke
,
W.
,
2018
, “
Convective Scaling of Intrinsic Thermo-Acoustic Eigenfrequencies of a Premixed Swirl Combustor
,”
ASME J. Eng. Gas Turbines Power
,
140
(
4
), p.
041510
.10.1115/1.4038083
19.
Hosseini
,
N.
,
Kornilov
,
V.
,
Lopez Arteaga
,
I.
,
Polifke
,
W.
,
Teerling
,
O.
, and
de Goey
,
L.
,
2018
, “
Intrinsic Thermoacoustic Modes and Their Interplay With Acoustic Modes in a Rijke Burner
,”
Int. J. Spray Combust. Dyn.
,
10
(
4
), pp.
315
325
.10.1177/1756827718782884
20.
Sogaro
,
F. M.
,
Schmid
,
P. J.
, and
Morgans
,
A. S.
,
2019
, “
Thermoacoustic Interplay Between Intrinsic Thermoacoustic and Acoustic Modes: Non-Normality and High Sensitivities
,”
J. Fluid Mech.
,
878
, pp.
190
220
.10.1017/jfm.2019.632
21.
Silva
,
C.
,
Yong
,
K. J.
, and
Magri
,
L.
,
2019
, “
Thermoacoustic Modes of Quasi-One-Dimensional Combustors in the Region of Marginal Stability
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021022
.10.1115/1.4041118
22.
Orchini
,
A.
,
Silva
,
C. F.
,
Mensah
,
G. A.
, and
Moeck
,
J. P.
,
2020
, “
Thermoacoustic Modes of Intrinsic and Acoustic Origin and Their Interplay With Exceptional Points
,”
Combust. Flame
,
211
, pp.
83
95
.10.1016/j.combustflame.2019.09.018
23.
Buschmann
,
P. E.
,
Mensah
,
G. A.
,
Nicoud
,
F.
, and
Moeck
,
J. P.
,
2019
, “
Solution of Thermoacoustic Eigenvalue Problems With a Non-Iterative Method
,”
ASME
Paper No. GT2019-90834.10.1115/GT2019-90834
24.
Buschmann
,
P. E.
,
Mensah
,
G. A.
, and
Moeck
,
J. P.
,
2020
, “
Intrinsic Thermoacoustic Modes in an Annular Combustion Chamber
,”
Combust. Flame
,
214
, pp.
251
262
.10.1016/j.combustflame.2019.11.006
25.
Staffelbach
,
G.
,
Gicquel
,
L. Y. M.
,
Boudier
,
G.
, and
Poinsot
,
T.
,
2009
, “
Large Eddy Simulation of Self Excited Azimuthal Modes in Annular Combustors
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2909
2916
.10.1016/j.proci.2008.05.033
26.
Wolf
,
P.
,
Staffelbach
,
G.
,
Gicquel
,
L. Y. M.
,
Müller
,
J.-D.
, and
Poinsot
,
T.
,
2012
, “
Acoustic and Large Eddy Simulation Studies of Azimuthal Modes in Annular Combustion Chambers
,”
Combust. Flame
,
159
(
11
), pp.
3398
3413
.10.1016/j.combustflame.2012.06.016
27.
Avdonin
,
A.
,
Meindl
,
M.
, and
Polifke
,
W.
,
2019
, “
Thermoacoustic Analysis of a Laminar Premixed Flame Using a Linearized Reacting Flow Solver
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5307
5314
.10.1016/j.proci.2018.06.142
28.
Gikadi
,
J.
,
2013
, “
Prediction of Acoustic Modes in Combustors Using Linearized Navier-Stokes Equations in Frequency Space
,”
Ph.D. thesis
,
Technische Universität München
,
Garching, Germany
.https://mediatum.ub.tum.de/doc/1166369/1166369.pdf
29.
Schulze
,
M.
,
Hummel
,
T.
,
Klarmann
,
N.
,
Berger
,
F. M.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2017
, “
Linearized Euler Equations for the Prediction of Linear High-Frequency Stability in Gas Turbine Combustors
,”
ASME J. Eng. Gas Turbines Power
,
139
(
3
), p.
031510
.10.1115/1.4034453
30.
Nicoud
,
F.
,
Benoit
,
L.
,
Sensiau
,
C.
, and
Poinsot
,
T.
,
2007
, “
Acoustic Modes in Combustors With Complex Impedances and Multidimensional Active Flames
,”
AIAA J.
,
45
(
2
), pp.
426
441
.10.2514/1.24933
31.
Krüger
,
U.
,
Hüren
,
J.
,
Hoffmann
,
S.
,
Krebs
,
W.
, and
Bohn
,
D.
,
1999
, “
Prediction of Thermoacoustic Instabilities With Focus on the Dynamic Flame Behavior for the 3A-Series Gas Turbine of Siemens KWU
,”
ASME
Paper No. 99-GT-111.10.1115/99-GT-111
32.
Evesque
,
S.
, and
Polifke
,
W.
,
2002
, “
Low-Order Acoustic Modelling for Annular Combustors: Validation and Inclusion of Modal Coupling
,”
ASME
Paper No. GT-2002-30064.10.1115/GT-2002-30064
33.
Parmentier
,
J.-F.
,
Salas
,
P.
,
Wolf
,
P.
,
Staffelbach
,
G.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
2012
, “
A Simple Analytical Model to Study and Control Azimuthal Instabilities in Annular Combustion Chambers
,”
Combust. Flame
,
159
(
7
), pp.
2374
2387
.10.1016/j.combustflame.2012.02.007
34.
Bauerheim
,
M.
,
Parmentier
,
J.-F.
,
Salas
,
P.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
2014
, “
An Analytical Model for Azimuthal Thermoacoustic Modes in an Annular Chamber Fed by an Annular Plenum
,”
Combust. Flame
,
161
(
5
), pp.
1374
1389
.10.1016/j.combustflame.2013.11.014
35.
Yang
,
D.
,
Laera
,
D.
, and
Morgans
,
A. S.
,
2019
, “
A Systematic Study of Nonlinear Coupling of Thermoacoustic Modes in Annular Combustors
,”
J. Sound Vib.
,
456
, pp.
137
161
.10.1016/j.jsv.2019.04.025
36.
Bloch
,
F.
,
1929
, “
Über Die Quantenmechanik Der Elektronen in Kristallgittern
,”
Z. Für Phys.
,
52
(
7–8
), pp.
555
600
.10.1007/BF01339455
37.
Mensah
,
G. A.
,
Campa
,
G.
, and
Moeck
,
J. P.
,
2016
, “
Efficient Computation of Thermoacoustic Modes in Industrial Annular Combustion Chambers Based on Bloch-Wave Theory
,”
ASME J. Eng. Gas Turbines Power
,
138
(
8
), p.
081502
.10.1115/1.4032335
38.
Ghirardo
,
G.
,
Di Giovine
,
C.
,
Moeck
,
J. P.
, and
Bothien
,
M. R.
,
2019
, “
Thermoacoustics of Can-Annular Combustors
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011007
.10.1115/1.4040743
39.
Haeringer
,
M.
, and
Polifke
,
W.
,
2019
, “
Time Domain Bloch Boundary Conditions for Efficient Simulation of Thermoacoustic Limit-Cycles in (Can-)Annular Combustors
,”
ASME J. Eng. Gas Turbines Power
,
141
(
12
), p.
121005
.10.1115/1.4044869
40.
Poinsot
,
T.
, and
Veynante
,
D.
,
2012
,
Theoretical and Numerical Combustion
, 3rd ed.,
CNRS
,
Paris
.
41.
Schuller
,
T.
,
Durox
,
D.
,
Palies
,
P.
, and
Candel
,
S.
,
2012
, “
Acoustic Decoupling of Longitudinal Modes in Generic Combustion Systems
,”
Combust. Flame
,
159
(
5
), pp.
1921
1931
.10.1016/j.combustflame.2012.01.010
42.
Marble
,
F. E.
, and
Candel
,
S. M.
,
1977
, “
Acoustic Disturbance From Gas Non-Uniformities Convected Through a Nozzle
,”
J. Sound Vib.
,
55
(
2
), pp.
225
243
.10.1016/0022-460X(77)90596-X
43.
Bauerheim
,
M.
,
Duran
,
I.
,
Livebardon
,
T.
,
Wang
,
G.
,
Moreau
,
S.
, and
Poinsot
,
T.
,
2016
, “
Transmission and Reflection of Acoustic and Entropy Waves Through a Stator–Rotor Stage
,”
J. Sound Vib.
,
374
, pp.
260
278
.10.1016/j.jsv.2016.03.041
44.
Morgans
,
A. S.
, and
Duran
,
I.
,
2016
, “
Entropy Noise: A Review of Theory, Progress and Challenges
,”
Int. J. Spray Combust. Dyn.
,
8
(
4
), pp.
285
298
.10.1177/1756827716651791
45.
Chu
,
B.-T.
,
1953
, “
On the Generation of Pressure Waves at a Plane Flame Front
,”
Symp. (Int.) Combust.
,
4
(
1
), pp.
603
612
.10.1016/S0082-0784(53)80081-0
46.
Crocco
,
L.
,
1951
, “
Aspects of Combustion Stability in Liquid Propellant Rocket Motors Part1: Fundamentals. Low Frequency Instability With Monopropellants
,”
J. Am. Rocket Soc.
,
21
(
6
), pp.
163
178
.10.2514/8.4393
47.
Bauerheim
,
M.
,
Cazalens
,
M.
, and
Poinsot
,
T.
,
2015
, “
A Theoretical Study of Mean Azimuthal Flow and Asymmetry Effects on Thermo-Acoustic Modes in Annular Combustors
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3219
3227
.10.1016/j.proci.2014.05.053
48.
Haeringer
,
M.
,
Fournier
,
G. J. J.
,
Meindl
,
M.
, and
Polifke
,
W.
,
2020
, “
A Strategy to Tune Acoustic Terminations of Single-Can Test-Rigs to Mimic Thermoacoustic Behavior of a Full Engine
,”
ASME J. Eng. Gas Turbines Power
, ePub.10.1115/1.4048642
49.
Emmert
,
T.
,
2016
, “
State Space Modeling of Thermoacoustic Systems With Application to Intrinsic Feedback
,”
Ph.D. thesis
,
TU München
,
München, Germany
.https://mediatum.ub.tum.de/doc/1306410/1306410.pdf
50.
Emmert
,
T.
,
Meindl
,
M.
,
Jaensch
,
S.
, and
Polifke
,
W.
,
2016
, “
Linear State Space Interconnect Modeling of Acoustic Systems
,”
Acta Acust. United Acust.
,
102
(
5
), pp.
824
833
.10.3813/AAA.918997
51.
Mensah
,
G. A.
,
2019
, “
Efficient Computation of Thermoacoustic Modes
,”
Ph.D. thesis
,
Technische Universität Berlin
.https://depositonce.tu-berlin.de/bitstream/11303/9942/4/mensah_georg.pdf
You do not currently have access to this content.