Abstract

This paper first characterizes the acoustic field of two annular combustors by means of data from acoustic pressure sensors. In particular, the amplitude, orientation, and nature of the acoustic field of azimuthal order n are characterized. The dependence of the pulsation amplitude on the azimuthal location in the chamber is discussed, and a protection scheme making use of just one sensor is proposed. The governing equations are then introduced, and a low-order model of the instabilities is discussed. The model accounts for the nonlinear response of M distinct flames, for system acoustic losses by means of an acoustic damping coefficient α and for the turbulent combustion noise, modeled by means of the background noise coefficient σ. Keeping the response of the flames arbitrary and in principle different from flame to flame, we show that, together with α and σ, only the sum of their responses and their 2n Fourier component in the azimuthal direction affect the dynamics of the azimuthal instability. The existing result that only this 2n Fourier component affects the stability of standing limit-cycle solutions is recovered. It is found that this result applies also to the case of a nonhomogeneous flame response in the annulus, and to flame responses that respond to the azimuthal acoustic velocity. Finally, a parametric flame model is proposed, depending on a linear driving gain β and a nonlinear saturation constant κ. The model is first mapped from continuous time to discrete time, and then recast as a probabilistic Markovian model. The identification of the parameters {α,β,κ,σ} is then carried out on engine time-series data. The optimal four parameters {α,σ,β,κ} are estimated as the values that maximize the data likelihood. Once the parameters have been estimated, the phase space of the identified low-order problem is discussed on selected invariant manifolds of the dynamical system.

References

1.
Keller
,
J. J.
,
1995
, “
Thermoacoustic Oscillations in Combustion Chambers of Gas Turbines
,”
AIAA J.
,
33
(
12
), pp.
2280
2287
.10.2514/3.12980
2.
Sewell
,
J. B.
,
Sobleski
,
P.
, and
Beers
,
C.
,
2004
, “
Application of Continuous Combustion Dynamics Monitoring on Large Industrial Gas Turbines
,”
ASME
Paper No. GT2004-54310.10.1115/GT2004-54310
3.
Scarinci
,
T.
,
2005
, “
Combustion Instability and Its Passive Control: Rolls-Royce Aeroderivative Engine Experience
,”
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling, Chapter
,
T. C.
Lieuwen
, and
V.
Yang
, eds., Vol.
4
,
American Institute of Aeronautics and Astronautics
,
Reston, VA
, pp.
65
88
.
4.
Güthe
,
F.
,
Hellat
,
J.
, and
Flohr
,
P.
,
2009
, “
The Reheat Concept: The Proven Pathway to Ultralow Emissions and High Efficiency and Flexibility
,”
ASME J. Eng. Gas Turbines Power
,
131
(
2
), p.
021503
.10.1115/1.2836613
5.
Paschereit
,
C. O.
,
Schuermans
,
B.
,
Polifke
,
W.
, and
Mattson
,
O.
,
2002
, “
Measurement of Transfer Matrices and Source Terms of Premixed Flames
,”
ASME J. Eng. Gas Turbines Power
,
124
(
2
), pp.
239
247
.10.1115/1.1383255
6.
SchuermansBellucci
,
B. V.
, and
Paschereit
,
C. O.
,
2003
, “
Thermoacoustic Modeling and Control of Multi Burner Combustion Systems
,”
ASME
Paper No. 2003-GT-38688
. 10.1115/2003-GT-38688
7.
Durox
,
D.
,
Prieur
,
K.
,
Schuller
,
T.
, and
Candel
,
S.
,
2016
, “
Different Flame Patterns Linked With Swirling Injector Interactions in an Annular Combustor
,”
ASME J. Eng. Gas Turbines Power
,
138
(
10
), p.
101504
.10.1115/1.4033330
8.
Fanaca
,
D.
,
Alemela
,
P. R.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2010
, “
Comparison of the Flow Field of a Swirl Stabilized Premixed Burner in an Annular and a Single Burner Combustion Chamber
,”
ASME J. Eng. Gas Turbines Power
,
132
(
7
), p.
071502
.10.1115/1.4000120
9.
Anisimov
,
V. V.
,
Chiarioni
,
A.
,
Rofi
,
L.
,
Ozzano
,
C.
,
Hermeth
,
S.
,
Hannebique
,
G.
,
Staffelbach
,
G.
, and
Poinsot
,
T.
,
2015
, “
Bi-Stable Flame Behaviour of Heavy Duty Gas Turbine Burner: RANS, LES and Experiment Comparison
,”
ASME
Paper No. 42536.10.1115/GT2015-42536
10.
O'Connor
,
J.
,
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2013
, “
Flame and Flow Dynamics of a Self-Excited, Standing Wave Circumferential Instability in a Model Annular Gas Turbine Combustor
,”
ASME
Paper No. GT2013-95897.10.1115/GT2013-95897
11.
Rofi
,
L.
,
Anisimov
,
V.
,
Chiarioni
,
A.
,
Ozzano
,
C.
, and
Daccà
,
F.
,
2014
, “
Bi-Stable Flame Behaviour of Heavy Duty Gas Turbine Burner
,”
ASME
Paper No. GT2014-25546.10.1115/GT2014-25546
12.
SinglaNoiray
,
G. N.
, and
Schuermans
,
B.
,
2012
, “
Combustion Dynamics Validation of an Annular Reheat Combustor
,”
ASME
Paper No. GT2012-68684.10.1115/GT2012-68684
13.
Ghirardo
,
G.
,
Boudy
,
F.
, and
Bothien
,
M. R.
,
2018
, “
Amplitude Statistics Prediction in Thermoacoustics
,”
J. Fluid Mech.
,
844
, pp.
216
246
.10.1017/jfm.2018.173
14.
Bothien
,
M. R.
,
Noiray
,
N.
, and
Schuermans
,
B.
,
2015
, “
Analysis of Azimuthal Thermo-Acoustic Modes in Annular Gas Turbine Combustion Chambers
,”
ASME J. Eng. Gas Turbines Power
,
137
(
6
), p.
061505
.10.1115/1.4028718
15.
Ghirardo
,
G.
, and
Juniper
,
M. P.
,
2013
, “
Azimuthal Instabilities in Annular Combustors: Standing and Spinning Modes
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
469
(
2157
), p. 16.10.1098/rspa.2013.0232
16.
Hummel
,
T.
,
Berger
,
F.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2016
, “
Theory and Modeling of Non-Degenerate Transversal Thermoacoustic Limit Cycle Oscillations
,”
Thermoacoustic Instabilities Gas Turbines Rocket Engines: Industry Meets Academia
, Munich, Germany, May 30–June 2, pp.
1
13
.https://www.researchgate.net/publication/304570822_Theory_and_Modeling_of_Non-Degenerate_Transversal_Thermoacoustic_Limit_Cycle_Oscillations
17.
Noiray
,
N.
,
Bothien
,
M. R.
, and
Schuermans
,
B.
,
2011
, “
Investigation of Azimuthal Staging Concepts in Annular Gas Turbines
,”
Combust. Theory Modell.
,
15
(
5
), pp.
585
606
.10.1080/13647830.2011.552636
18.
Noiray
,
N.
, and
Schuermans
,
B.
,
2013
, “
On the Dynamic Nature of Azimuthal Thermoacoustic Modes in Annular Gas Turbine Combustion Chambers
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
469
(
2151
), p. 15.10.1098/rspa.2012.0535
19.
Schuermans
,
B.
,
Paschereit
,
C. O.
, and
Monkewitz
,
P.
,
2006
, “
Non-Linear Combustion Instabilities in Annular Gas-Turbine Combustors
,”
AIAA
Paper No. 2006-0549.10.2514/6.2006-549
20.
Ghirardo
,
G.
, and
Bothien
,
M. R.
,
2018
, “
Quaternion Structure of Azimuthal Instabilities
,”
Phys. Rev. Fluids
,
3
(
11
), p.
113202
.10.1103/PhysRevFluids.3.113202
21.
Åbom
,
M.
,
1992
, “
A Note on the Experimental Determination of Acoustical Two-Port Matrices
,”
J. Sound Vib.
,
155
(
1
), pp.
185
188
.10.1016/0022-460X(92)90655-H
22.
Seybert
,
A. F.
, and
Ross
,
D. F.
,
1977
, “
Experimental Determination of Acoustic Properties Using a Two-Microphone Random-Excitation Technique
,”
J. Acoust. Soc. Am.
,
61
(
5
), pp.
1362
1370
.10.1121/1.381403
23.
Ghirardo
,
G.
, and
Gant
,
F.
,
2019
, “
Background Noise Pushes Azimuthal Instabilities Away From Spinning States
,”
arXiv:1904.00213v1
, pp.
1
4
. https://arxiv.org/abs/1904.00213
24.
Ghirardo
,
G.
,
Juniper
,
M. P.
, and
Moeck
,
J. P.
,
2016
, “
Weakly Nonlinear Analysis of Thermoacoustic Instabilities in Annular Combustors
,”
J. Fluid Mech.
,
805
, pp.
52
87
.10.1017/jfm.2016.494
25.
Doran
,
C.
, and
Lasenby
,
A.
,
2003
,
Geometric Algebra for Physicists
,
Cambridge University Press
,
Cambridge, UK
.
26.
Rajaram
,
R.
, and
Lieuwen
,
T.
,
2009
, “
Acoustic Radiation From Turbulent Premixed Flames
,”
J. Fluid Mech.
,
637
, pp.
357
385
.10.1017/S0022112009990681
27.
Strahle
,
W. C.
,
1972
, “
Some Results in Combustion Generated Noise
,”
J. Sound Vib.
,
23
(
1
), pp.
113
125
.10.1016/0022-460X(72)90792-4
28.
Lieuwen
,
T.
,
2003
, “
Statistical Characteristics of Pressure Oscillations in a Premixed Combustor
,”
J. Sound Vib.
,
260
(
1
), pp.
3
17
.10.1016/S0022-460X(02)00895-7
29.
Acharya
,
V. S.
, and
Lieuwen
,
T.
,
2014
, “
Response of Non-Axisymmetric Premixed, Swirl Flames to Helical Disturbances
,”
ASME
Paper No. GT2014-27059.10.1115/GT2014-27059
30.
Hauser
,
M.
,
Lorenz
,
M.
, and
Sattelmayer
,
T.
,
2011
, “
Influence of Transversal Acoustic Excitation of the Burner Approach Flow on the Flame Structure
,”
ASME J. Eng. Gas Turbines Power
,
133
(
4
), p.
041501
.10.1115/1.4002175
31.
O'Connor
,
J.
, and
Acharya
,
V. S.
,
2013
, “
Development of a Flame Transfer Function Framework for Transversely Forced Flames
,”
ASME
Paper No. GT2013-95900.10.1115/GT2013-95900
32.
Saurabh
,
A.
, and
Paschereit
,
C. O.
,
2017
, “
Dynamics of Premixed Swirl Flames Under the Influence of Transverse Acoustic Fluctuations
,”
Combust. Flame
,
182
, pp.
298
312
.10.1016/j.combustflame.2017.04.014
33.
Saurabh
,
A.
, and
Paschereit
,
C. O.
,
2019
, “
Premixed Flame Dynamics in Response to Two-Dimensional Acoustic Forcing
,”
Combust. Sci. Technol.
,
191
(
7
), pp.
1184
1200
.10.1080/00102202.2018.1516648
34.
Ghirardo
,
G.
,
Juniper
,
M. P.
, and
Bothien
,
M. R.
,
2018
, “
The Effect of the Flame Phase on Thermoacoustic Instabilities
,”
Combust. Flame
,
187
, pp.
165
184
.10.1016/j.combustflame.2017.09.007
35.
Bourgouin
,
J.-F.
,
Durox
,
D.
,
Moeck
,
J. P.
,
Schuller
,
T.
, and
Candel
,
S.
,
2015
, “
Characterization and Modeling of a Spinning Thermoacoustic Instability in an Annular Combustor Equipped With Multiple Matrix Injectors
,”
ASME J. Eng. Gas Turbines Power
,
137
(
2
), p. 021503. 10.1115/1.4028257
36.
Laera
,
D.
,
Schuller
,
T.
,
Prieur
,
K.
,
Durox
,
D.
,
Camporeale
,
S. M.
, and
Candel
,
S.
,
2017
, “
Flame Describing Function Analysis of Spinning and Standing Modes in an Annular Combustor and Comparison With Experiments
,”
Combust. Flame
,
184
, pp.
136
152
.10.1016/j.combustflame.2017.05.021
37.
Kloeden
,
P. E.
, and
Platen
,
E.
,
1995
,
Numerical Solution of Stochastic Differential Equations
, 2nd ed.,
Springer
,
Berlin
.
You do not currently have access to this content.